精英家教网 > 初中数学 > 题目详情

【题目】某工艺品厂设计了一款成本为10元/件的小工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价x(元/件)

20

30

40

50

60

每天销售量y(件)

500

400

300

200

100


(1)把上表中x,y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式.
(2)当销售单价为多少元时,工艺品厂试销该小工艺品每天获得的利润最大?最大利润是多少?(利润=销售额﹣成本)

【答案】
(1)解:画出图形,如图所示.

由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),

∵这个一次函数的图象经过(20,500),(30,400)两点,

,解得:

∴函数关系式是y=﹣10x+700.

经验证,其他各点也在y=﹣10x+700上


(2)解:设工艺品试销每天获得利润为W元,

由已知得:W=(x﹣10)(﹣10x+700)=﹣10x2+800x﹣7000=﹣10(x﹣40)2+9000,

∵﹣10<0,

∴当x=40时,W取最大值,最大值为9000.

故:当销售单价为40元时,工艺品厂试销该小工艺品每天获得的利润最大,最大利润是9000元


【解析】(1)将表中各点描在坐标系中,根据点的分别可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出该函数关系式式,再验证其余各点是否在该函数关系式的图象上,由此即可得出结论;(2)设工艺品试销每天获得利润为W元,根据“利用=单件利润×销售数量”即可得出W关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是(
A.16π
B.36π
C.52π
D.81π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,以BC为半径作⊙B,交AB于点D,交AB的延长线于点E,连接CD、CE.
(1)求证:△ACD∽△AEC;
(2)当 = 时,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营一批进价是30元/件的商品,在市场试销中的日销售量y件与销售价x元之间满足一次函数关系.
(1)请借助以下记录确定y与x的函数关系式,并写出自变量x的取值范围;

x

35

40

45

50

y

57

42

27

12


(2)若日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出当销售单价x为多少元时,才能获得最大的销售利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC、△DCE、△FEG为等边三角形,边长分别为2、3、5,且从左至右如图排列,连接BF,交DC、DE分别于M、N两点,则△DMN的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y= (x<0)的图象交于A(﹣1,3),B(﹣3,n)两点,直线y=﹣1与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE是AC的垂直平分线,点D在BC上,△ABC的周长为20cm,△ABD的周长为12cm,则AE的长为cm.

查看答案和解析>>

同步练习册答案