精英家教网 > 初中数学 > 题目详情

【题目】2016山东省菏泽市)如图,△ACB和△DCE均为等腰三角形,点ADE在同一直线上,连接BE

1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°

①求证:AD=BE

②求∠AEB的度数.

2)如图2,若∠ACB=∠DCE=120°,CM为△DCEDE边上的高,BN为△ABEAE边上的高,试证明:AE=CM+BN

【答案】1)①证明见解析;②80°;(2)证明见解析.

【解析】试题(1)①通过角的计算找出∠ACD=BCE,再结合ACBDCE均为等腰三角形可得出AC=BCDC=EC,利用全等三角形的判定(SAS)即可证出ACD≌△BCE,由此即可得出结论AD=BE

②结合①中的ACD≌△BCE可得出∠ADC=BEC,再通过角的计算即可算出∠AEB的度数;

(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段ADDE的长度,二者相加即可证出结论.

试题解析:(1)①证明:∵∠CAB=CBA=CDE=CED=50°,∴∠ACB=DCE=180°﹣2×50°=80°.

∵∠ACB=ACD+DCBDCE=DCB+BCE∴∠ACD=BCE

∵△ACBDCE均为等腰三角形,∴AC=BCDC=EC

ACDBCE中,∵AC=BCACD=BCEDC=EC∴△ACD≌△BCESAS),AD=BE

②解:∵△ACD≌△BCE∴∠ADC=BEC

∵点ADE在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣CDE=130°,∴∠BEC=130°.

∵∠BEC=CED+AEB,且∠CED=50°,∴∠AEB=BECCED=130°﹣50°=80°.

(2)证明:∵△ACBDCE均为等腰三角形,且∠ACB=DCE=120°,∴∠CDM=CEM=×(180°﹣120°)=30°.

CMDE∴∠CMD=90°,DM=EM

RtCMD中,∠CMD=90°,CDM=30°,DE=2DM=2×=CM

∵∠BEC=ADC=180°﹣30°=150°,BEC=CEM+AEB∴∠AEB=BECCEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.

RtBNE中,∠BNE=90°,BEN=60°,BE==BN

AD=BEAE=AD+DEAE=BE+DE=CM+BN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了  名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为  

(2)将条形统计图补充完整;

(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(100),点B的坐标为(108),已知直线AC与双曲线ym0)在第一象限内有一交点Q5n).

1)求直线AC和双曲线的解析式;

2)若动点PA点出发,沿折线AOOC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与的运动时间t秒的函数关系式,并求当t取何值时S10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家的住房结构平面图,(单位:米),装修房子时,他打算将卧室以外的部分都铺上地砖,

(1)若铺地砖的价格为80/平方米,那么购买地砖需要花多少钱?(用代数式表示)

(2)已知房屋的高度为3米,现在想要在客厅和卧室的墙壁上贴上壁纸,那么需要多少平方米的壁纸(门窗所占面积忽略不计)(用代数式表示)

(3)x4,y=5,且每平方米地砖的价格是90元,每平方米壁纸的价格是15元,那么,在这两项装修中,小明共要花费多少钱?(各种小的损耗不计)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,四边形ABCD中,AB=3cmAD=4cmBC=13cmCD=12cm,且∠A=90°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑦个图形中完整菱形的个数为(  )

A. 83B. 84C. 85D. 86

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠BAC=75°ACB=35°ABC的平分线BD交边AC于点D

1)求证:△BCD为等腰三角形;

2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE

3)若∠BAC外角的平分线AECB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008

【答案】1﹣10m2n3+8m3n2;(22x﹣40(3)1

【解析】试题分析:1)原式利用单项式乘以多项式法则计算即可得到结果;

2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果

3)先根据幂的乘方的逆运算,把()2 016化为()1008,再根据积的乘方的逆运算计算即可.

试题解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
束】
19

【题目】如图,方格图中每个小正方形的边长为1,点ABC都是格点.

1)画出△ABC关于直线BM对称的△A1B1C1

2)写出AA1的长度.

查看答案和解析>>

同步练习册答案