精英家教网 > 初中数学 > 题目详情
3.如图,已知Rt△ABC中,AB=AC=$\sqrt{2}$,点D为直线BC上的动点(不与B、C重合),以A为直角顶点作等腰直角三角形ADE(点A,D,E按逆时针顺序排列),连结CE.
(1)当点D在线段BC上时,
①求证:BD=CE;
②求CD+CE的值;
(2)当点D在直线BC上运动时,直接写出CD与CE之间的数量关系.

分析 (1)①根据等腰直角三角形的性质得到AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,然后根据全等三角形的性质即可推得结论;②等量代换即可得到即可得出结论;
(2)方法与(1)相同.

解答 解:(1)证明:①∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵AD=AE,∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC
即∠BAD=∠CAE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AF}\end{array}\right.$,
∴△ABD≌△ACE,
∴BD=CE,
②点D在线段BC上时,∵BD=CE,∴CD+CE=CD+BD=BC=$\sqrt{2}$AB=2,即CD+CE=2;
(2)点D在直线BC上运动时,CD与CE之间的数量关系情况如下:①如(1)题,
②当点D在BC延长线上时,如图2,理由:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵AD=AE,∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC
即∠BAD=∠CAE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AF}\end{array}\right.$,
∴△ABD≌△ACE,
∴BD=CE,
∴CE-CD=2;
③当点D在BC反向延长线上时,如图3,
理由:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵AD=AE,∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC
即∠BAD=∠CAE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AF}\end{array}\right.$,
∴△ABD≌△ACE,
∴BD=CE,
∴CD-CE-=2.

点评 本题考查了等腰直角三角形三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为(  )
A.$\left\{\begin{array}{l}{x+y=100}\\{3x+3y=100}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=100}\\{x+3y=100}\end{array}\right.$
C.$\left\{\begin{array}{l}{x+y=100}\\{3x+\frac{1}{3}y=100}\end{array}\right.$D.$\left\{\begin{array}{l}{x+y=100}\\{3x+y=100}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(-4,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)在y轴左侧的抛物线上有一动点D.
①如图(a),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴,交QC于点F,请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为$\sqrt{2}$:1?若存在,请求出点D的坐标;若不存在,请说明理由.
②如图(b),若四边形ODAE是以OA为对角线的平行四边形,当?ODAE的面积S为何值时,满足条件的点D恰好有3个?请直接写出此时S的值以及相应的D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=4,则GH的长为$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,O为?ABCD对角线AC,BD的交点,EF经过点O,且与边AD,BC分别交于点E,F,则图中的全等三角形有(  )
A.4对B.5对C.6对D.7对

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知⊙O是△ABC的外接圆,连结OB、OC,则∠BAC是(  )
A.锐角B.直角C.钝角D.以上都有可能

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠2=25°,则∠1的度数为(  )
A.20°B.25°C.30°D.35°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:$\frac{3}{x-2}$=$\frac{1}{x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:$\sqrt{6}$÷$\sqrt{2}$+|-4|-2cos30°.

查看答案和解析>>

同步练习册答案