14£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+3ÓëxÖá½»ÓÚµãA£¨-4£¬0£©£¬B£¨-1£¬0£©Á½µã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚyÖá×ó²àµÄÅ×ÎïÏßÉÏÓÐÒ»¶¯µãD£®
¢ÙÈçͼ£¨a£©£¬Ö±Ïßy=x+3ÓëÅ×ÎïÏß½»ÓÚµãQ¡¢CÁ½µã£¬¹ýµãD×÷Ö±ÏßDF¡ÍxÖᣬ½»QCÓÚµãF£¬ÇëÎÊÊÇ·ñ´æÔÚÕâÑùµÄµãD£¬Ê¹µãDµ½Ö±ÏßCQµÄ¾àÀëÓëµãCµ½Ö±ÏßDFµÄ¾àÀëÖ®±ÈΪ$\sqrt{2}$£º1£¿Èô´æÔÚ£¬ÇëÇó³öµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¢ÚÈçͼ£¨b£©£¬ÈôËıßÐÎODAEÊÇÒÔOAΪ¶Ô½ÇÏߵį½ÐÐËıßÐΣ¬µ±?ODAEµÄÃæ»ýSΪºÎֵʱ£¬Âú×ãÌõ¼þµÄµãDÇ¡ºÃÓÐ3¸ö£¿ÇëÖ±½Óд³ö´ËʱSµÄÖµÒÔ¼°ÏàÓ¦µÄDµã×ø±ê£®

·ÖÎö £¨1£©½áºÏµãA¡¢BµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¢Ù¼ÙÉè´æÔÚ£¬Éè³öµãDµÄ×ø±ê£®ÁªÁ¢Ò»´Îº¯ÊýÓëÅ×ÎïÏߵĽâÎöʽ³É·½³Ì×飬½â·½³Ì×éÇó³öµãQ¡¢CµÄ×ø±ê£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öµãDµ½Ö±ÏßCQµÄ¾àÀëºÍµãCµ½Ö±ÏßDFµÄ¾àÀ룬¸ù¾Ý¶þÕߵıÈÀý¹ØÏµµÃ³ö¹ØÓÚmµÄº¬¾ø¶ÔÖµ·ûºÅµÄÒ»Ôª¶þ´Î·½³Ì£¬½â·½³ÌµÃ³ömµÄÖµ£¬Óɴ˼´¿ÉµÃ³öµãDµÄ×ø±ê£»
¢Ú¸ù¾ÝÅ×ÎïÏߵĽâÎöʽÕÒ³öÆä¶¥µã×ø±ê£¬½áºÏº¯ÊýͼÏóѰÕÒ³öµ±µãDµÄ×Ý×ø±ê¾ø¶ÔֵΪ$\frac{27}{16}$ʱ£¬Âú×ãÌâÒâµÄµãDÓÐÈý¸ö£¬ÀûÓ÷ָîͼÐη¨Çó³öƽÐÐËıßÐεÄÃæ»ýS£¬ÔÙ½«y=¡À$\frac{27}{16}$´úÈëÅ×ÎïÏß½âÎöʽÇó³öµãDµÄ×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©½«µãA£¨-4£¬0£©¡¢B£¨-1£¬0£©´úÈëÅ×ÎïÏßy=ax2+bx+3ÖУ¬
µÃ£º$\left\{\begin{array}{l}{0=16a-4b+3}\\{0=a-b+3}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=\frac{3}{4}}\\{b=\frac{15}{4}}\end{array}\right.$£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{3}{4}{x}^{2}$+$\frac{15}{4}$x+3£®
£¨2£©¢Ù¼ÙÉè´æÔÚ£¬ÉèµãDµÄ×ø±êΪ£¨m£¬$\frac{3}{4}$m2+$\frac{15}{4}$m+3£©£¨m£¼0£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=x+3}\\{y=\frac{3}{4}{x}^{2}+\frac{15}{4}x+3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{11}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$£®
¡àµãCµÄ×ø±êΪ£¨0£¬3£©£®
Ö±ÏßCQµÄ½âÎöʽΪy=x+3¿É±äÐÎΪx-y+3=0£¬
Ö±ÏßDFµÄ½âÎöʽΪx=m£¬
µãDµ½Ö±ÏßCQµÄ¾àÀëd1=$\frac{|m-£¨\frac{3}{4}{m}^{2}+\frac{15}{4}m+3£©+3|}{\sqrt{{1}^{2}+£¨-1£©^{2}}}$=$\frac{|\frac{3}{4}{m}^{2}+\frac{11}{4}m|}{\sqrt{2}}$£»
µãCµ½Ö±ÏßDFµÄ¾àÀëd2=|0-m|=-m£®
¡ßd1£ºd2=$\sqrt{2}$£º1£¬
¡à$\frac{|\frac{3}{4}{m}^{2}+\frac{11}{4}m|}{\sqrt{2}}$=-$\sqrt{2}$m£¬
½âµÃ£ºm1=-$\frac{19}{3}$£¬m2=0£¨ÉáÈ¥£©£¬m3=-1£¬
¼´µãDµÄ×ø±êΪ£¨-$\frac{19}{3}$£¬$\frac{28}{3}$£©»ò£¨-1£¬0£©£®
¡à´æÔÚÕâÑùµÄµãD£¬Ê¹µãDµ½Ö±ÏßCQµÄ¾àÀëÓëµãCµ½Ö±ÏßDFµÄ¾àÀëÖ®±ÈΪ$\sqrt{2}$£º1£¬´ËʱµãDµÄ×ø±êΪ£¨-$\frac{19}{3}$£¬$\frac{28}{3}$£©»ò£¨-1£¬0£©£®
¢Ú¡ßÅ×ÎïÏߵĽâÎöʽΪy=$\frac{3}{4}{x}^{2}$+$\frac{15}{4}$x+3=$\frac{3}{4}$$£¨x+\frac{5}{2}£©^{2}$-$\frac{27}{16}$£¬
¡à¸ÃÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨-$\frac{5}{2}$£¬-$\frac{27}{16}$£©£®
ÉèµãDµ½xÖáµÄ¾àÀëΪh£¬
ÓÖ¡ßµãCµÄ×ø±êΪ£¨0£¬3£©£¬$\frac{27}{16}$£¼3£¬
¡àµ±0£¼h£¼$\frac{27}{16}$ʱ£¬Âú×ãÌâÒâµÄµãDÓÐ4¸ö£»µ±h=$\frac{27}{16}$ʱ£¬Âú×ãÌâÒâµÄµãDÓÐ3¸ö£»µ±$\frac{27}{16}$£¼h£¼3ʱ£¬Âú×ãÌâÒâµÄµãDÓÐ2¸ö£»µ±h¡Ý3ʱ£¬Âú×ãÌâÒâµÄµãDÓÐ1¸ö£®
¡àh=$\frac{27}{16}$£¬´ËʱS=AO•h=4¡Á$\frac{27}{16}$=$\frac{27}{4}$£®
£¨i£©½«y=-$\frac{27}{16}$´úÈëy=$\frac{3}{4}{x}^{2}$+$\frac{15}{4}$x+3Öеãº$\frac{3}{4}{x}^{2}$+$\frac{15}{4}$x+3=-$\frac{27}{16}$£¬
½âµÃ£ºx=-$\frac{5}{2}$£¬
´ËʱµãDµÄ×ø±êΪ£¨-$\frac{5}{2}$£¬-$\frac{27}{16}$£©£»
£¨ii£©½«y=$\frac{27}{16}$´úÈëy=$\frac{3}{4}{x}^{2}$+$\frac{15}{4}$x+3Öеãº$\frac{3}{4}{x}^{2}$+$\frac{15}{4}$x+3=$\frac{27}{16}$£¬
½âµÃ£ºx1=-$\frac{5+3\sqrt{2}}{2}$£¬x2=-$\frac{5-3\sqrt{2}}{2}$£¬
´ËʱµãDµÄ×ø±êΪ£¨-$\frac{5+3\sqrt{2}}{2}$£¬$\frac{27}{16}$£©»ò£¨-$\frac{5-3\sqrt{2}}{2}$£¬$\frac{27}{16}$£©£®
×ÛÉÏ¿ÉÖª£ºµ±?ODAEµÄÃæ»ýSΪ$\frac{27}{4}$ʱ£¬Âú×ãÌõ¼þµÄµãDÇ¡ºÃÓÐ3¸ö£¬´ËʱµãDµÄ×ø±êΪ£¨-$\frac{5}{2}$£¬-$\frac{27}{16}$£©¡¢£¨-$\frac{5+3\sqrt{2}}{2}$£¬$\frac{27}{16}$£©ºÍ£¨-$\frac{5-3\sqrt{2}}{2}$£¬$\frac{27}{16}$£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢µãµ½Ö±ÏߵľàÀë¡¢½â¶þÔª¶þ´Î·½³Ì×é¡¢½âÒ»Ôª¶þ´Î·½³ÌÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»£¨2£©¢Ù¸ù¾Ý±ÈÀý¹ØÏµÕÒ³ö¹ØÓÚmµÄº¬¾ø¶ÔÖµ·ûºÅµÄÒ»Ôª¶þ´Î·½³Ì£»¢ÚÈ·¶¨µãDµ½xÖáµÄ¾àÀ루µãDµÄ×Ý×ø±êµÄ¾ø¶ÔÖµ£©£®±¾ÌâÊôÓÚÖеµÌ⣬£¨1£©Ã»ÄѶȣ»£¨2£©¢ÙÄѶȲ»´ó£¬±¾ÎÊÇÉÃîµÄÀûÓÃÁ˵㵽ֱÏߵľàÀ룬Æðµ½»¯·±Îª¼òµÄ×÷Ó㻢ÚÄѶȲ»´ó£¬ÉÔÏÔ·±Ëö£¬½â¾ö¸ÃÎÊʱ£¬½áºÏº¯ÊýͼÏó£¬ÀûÓÃÊýÐνáºÏ£¬È·¶¨µãDµ½xÖáµÄ¾àÀëÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¡÷ABCÖУ¬AB=6£¬AC=8£¬BC=10£¬DÊÇ¡÷ABCÄÚ²¿»òBC±ßÉϵÄÒ»¸ö¶¯µã£¨ÓëB¡¢C²»Öغϣ©£¬ÒÔDΪ¶¥µã×÷¡÷DEF£¬Ê¹¡÷DEF¡×¡÷ABC£¨ÏàËÆ±Èk£¾1£©£¬EF¡ÎBC£®
£¨1£©Çó¡ÏDµÄ¶ÈÊý£»
£¨2£©ÈôÁ½Èý½ÇÐÎÖØµþ²¿·ÖµÄÐÎ״ʼÖÕÊÇËıßÐÎAGDH£®
¢ÙÈçͼ1£¬Á¬½ÓGH¡¢AD£¬µ±GH¡ÍADʱ£¬ÇëÅжÏËıßÐÎAGDHµÄÐÎ×´£¬²¢Ö¤Ã÷£»
¢Úµ±¢ñµÄÃæ»ý×î´óʱ£¬¹ýA×÷AP¡ÍEFÓÚP£¬ÇÒAP=AD£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Í³¼ÆÑ§Ð£ÅÅÇò¶ÓÔ±µÄÄêÁ䣬·¢ÏÖÓÐ12¡¢13¡¢14¡¢15µÈËÄÖÖÄêÁ䣬ͳ¼Æ½á¹ûÈçÏÂ±í£º
ÄêÁ䣨Ë꣩12131415
ÈËÊý£¨¸ö£©2468
¸ù¾Ý±íÖÐÐÅÏ¢¿ÉÒÔÅжϸÃÅÅÇò¶ÓÔ±µÄƽ¾ùÄêÁäΪ£¨¡¡¡¡£©
A£®13B£®14C£®13.5D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©½â·½³Ì£º$\frac{2}{2x-1}=\frac{4}{{4{x^2}-1}}$
£¨2£©·½³Ì$\frac{2x-1}{2}=\frac{4x^2-1}{4}$µÄ½âΪx1=x2=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ò»Ôª¶þ´Î·½³Ìx2-2x+3=0µÄ¸ùµÄÇé¿öÊÇ£¨¡¡¡¡£©
A£®ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ùB£®ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù
C£®ÓÐÒ»¸öʵÊý¸ùD£®Ã»ÓÐʵÊý¸ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ£¬ÒÑÖªA£¬B£¬CÔÚ¡ÑOÉÏ£¬¡ÏACB=30¡ã£¬Ôò¡ÏAOBµÈÓÚ£¨¡¡¡¡£©
A£®60¡ãB£®50¡ãC£®45¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬µãCÊÇ¡ÑOÉϵ͝µã£¬ÏÒAB=4£¬¡ÏC=45¡ã£¬ÔòS¡÷ABCµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$2\sqrt{2}$+4B£®8C£®$2\sqrt{3}$+4D£®4$\sqrt{2}$+4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÒÑÖªRt¡÷ABCÖУ¬AB=AC=$\sqrt{2}$£¬µãDΪֱÏßBCÉϵ͝µã£¨²»ÓëB¡¢CÖØºÏ£©£¬ÒÔAΪֱ½Ç¶¥µã×÷µÈÑüÖ±½ÇÈý½ÇÐÎADE£¨µãA£¬D£¬E°´ÄæÊ±Õë˳ÐòÅÅÁУ©£¬Á¬½áCE£®
£¨1£©µ±µãDÔÚÏß¶ÎBCÉÏʱ£¬
¢ÙÇóÖ¤£ºBD=CE£»
¢ÚÇóCD+CEµÄÖµ£»
£¨2£©µ±µãDÔÚÖ±ÏßBCÉÏÔ˶¯Ê±£¬Ö±½Óд³öCDÓëCEÖ®¼äµÄÊýÁ¿¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬Ö±Ïßy1=$\frac{1}{2}$x+2ÓëË«ÇúÏßy2=$\frac{6}{x}$½»ÓÚA£¨2£¬m£©¡¢B£¨-6£¬n£©Á½µã£®Ôòµ±y1£¼y2ʱ£¬xµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x£¾-6»ò0£¼x£¼2B£®-6£¼x£¼0»òx£¾2C£®x£¼-6»ò0£¼x£¼2D£®-6£¼x£¼2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸