精英家教网 > 初中数学 > 题目详情
若四边形ABCD与四边形A′B′C′D′关予点O成中心对称,若∠A=80°,AB=7cm,CO=9cm,则∠A′=
80°
80°
,A′B′=
7
7
cm,CC′=
18
18
cm.
分析:根据中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,即可得出答案.
解答:解:∵四边形ABCD与四边形A′B′C′D′关予点O成中心对称,
∴∠A'=∠A=80°,A'B'=AB=7cm,CC'=CO+OC'=2CO=18cm.
故答案为:80°、7cm、18cm.
点评:本题考查了中心对称的知识,解答本题的关键是熟练记忆中心对称的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图1,在△ABC中,若E、F分别是AB、BC的中点,则EF与AC的数量关系和位置关系分别为:
 

(2)如图2,任意四边形ABCD中,E、F、G、H分别是四条边的中点,则四边形EFGH的形状是
 
,并说明理由;
(3)若四边形ABCD是矩形,则连接其四边中点E、F、G、H,则四边形EFGH的形状是
 
,若四边形ABCD是菱形,连接其四边中点E、F、G、H,则四边形EFGH的形状是
 

(4)图2中,若四边形.EFGH是矩形,则四边形ABCD应满足的条件是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:
(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)
精英家教网
问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知S四边形P1P2R2R1=
13
S△ABC,请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.
问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求S四边形P2Q2Q3P3
问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.
例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)已知平行四边形ABCD,请你在两个备用图中分别画出一个只有一对等高点的四边ABCE,其中E点分别在四边形ABCD的形内、形外(要求:画出必要的辅助线);
(2)如图2,P是四边形ABCD对角线BD上任意一点(不与B、D点重合),S1、S2、S3、S4分别表示△ABP、△CBP、△ADP、△CDP的面积.若四边形ABCD只有一对等高点A、C,S1、S2、S3、S4四者之间的等量关系如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,方格纸中四边形ABCD的四个顶点均在格点上,将四边形ABCD向右平移5格得到四边形A1B1C1D1.再将四边形A1B1C1D1,绕点A逆时针旋转180°,得到四边形A1B2C2D2
(1)在方格纸中画出四边形A1B1C1D1和四边形A1B2C2D2
(2)四边形ABCD与四边形A1B2C2D2.是否成中心对称?若成中心对称,请画出对称中心;若不成中心对称,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.
(1)写出四边形ABCD四个顶点的坐标.
(2)现把四边形ABCD向上平移两格,向右平移三格,画出相应的图形A1B1C1D1
(3)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2

查看答案和解析>>

同步练习册答案