精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正确的有(  )
A.2个B.3个C.4个D.5个
C

试题分析:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠DOH=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.
(1)求证:BC是⊙O的切线;
(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面材料:
小腾遇到这样一个问题:如图1,在中,点在线段上,,求的长.

小腾发现,过点,交的延长线于点,通过构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的度数为         的长为            
参考小腾思考问题的方法,解决问题:
如图3,在四边形中,交于点,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,菱形ABCD中,点E,M在A,D上,且CD=CM,点F为AB上的点,且∠ECF=∠B
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积。
(2)求证:BF=EF-EM

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)请回答李晨的问题:若CD=10,则AD=    
(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:
①∠FCD的最大度数为    ;   
②当FC∥AB时,AD=    
③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD=    ;
④△FCD的面积s的取值范围是    .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在AB=30m,AD=20m的矩形花坛四周修筑小路.
(1)如图1,如果四周的小路的宽均相等,那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由.
(2)如图2,如果相对着的两条小路的宽均相等,试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一个三角形三边长分别为2,3,x,则x的值可以为    (只需填一个整数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )
 
A.45°B.54°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等腰梯形ABCD中,AD∥BC,AB=5,BC=8,∠BAD的平分线交BD于点E,且AE∥CD,则梯形ABCD的周长为(   )
A.21B.18C.D.10

查看答案和解析>>

同步练习册答案