精英家教网 > 初中数学 > 题目详情
如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.
(1)求证:BC是⊙O的切线;
(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.
(1)证明见解析;(2).

试题分析:(1)连结OC,根据垂径定理由AC⊥OB得AM=CM,于是可判断OB为线段AC的垂直平分线,所以BA=BC,然后利用“SSS”证明△OAB≌△OCB,得到∠OAB=∠OCB,由于∠OAB=90°,则∠OCB=90°,于是可根据切线的判定定理得BC是⊙O的切线;
(2)在Rt△OAB中,根据勾股定理计算出OB=2,根据含30度的直角三角形三边的关系得∠ABO=30°,∠AOB=60°,在Rt△PBO中,由∠BPO=30°得到PB=OB=2;在Rt△PBD中,BD=OB﹣OD=1,根据勾股定理计算出PD=,然后利用正弦的定义求sin∠BPD的值.
试题解析:(1)证明:连结OC,如图,

∵AC⊥OB,
∴AM=CM,
∴OB为线段AC的垂直平分线,
∴BA=BC,
在△OAB和△OCB中

∴△OAB≌△OCB,
∴∠OAB=∠OCB,
∵OA⊥AB,
∴∠OAB=90°,
∴∠OCB=90°,
∴OC⊥BC,
∴BC是⊙O的切线;
(2)解:在Rt△OAB中,OA=1,AB=

∴∠ABO=30°,∠AOB=60°,
∵PB⊥OB,
∴∠PBO=90°,
在Rt△PBO中,OB=2,∠BPO=30°,
∴PB=OB=2
在Rt△PBD中,BD=OB﹣OD=2﹣1=1,PB=2

∴sin∠BPD=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

六边形的外角和等于       度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

6cm长的一条弦所对的圆周角为90°,则此圆的直径为__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于相似的说法:①所有的等腰直角三角形一定相似;②所有的菱形一定相似;③所有的全等三角形一定相似;④所有的位似图形一定相似;⑤所有的有一个角为60°的等腰梯形一定相似.
其中说法正确的有(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为(  )

A.2.5     B.1.6    C.1.5     D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,点D是AB边的中点,点E是AC边的中点,连接DE,若BC=4,则DE=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正确的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为(  )

A.        B.       C.       D.

查看答案和解析>>

同步练习册答案