精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为(  )

A.2.5     B.1.6    C.1.5     D.1
B.

试题分析:连接OD、OE,
设AD=x,
∵半圆分别与AC、BC相切,
∴∠CDO=∠CEO=90°,
∵∠C=90°,
∴四边形ODCE是矩形,
∴OD=CE,OE=CD,
∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,
∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,
∴∠A=∠BOE,
∴△AOD∽OBE,


解得x=1.6,
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AD∥BC,AC=AB,AC平分∠DAB,F为BC上一点,且BF=AD,连接DF交AC于E点,连接BE.
(1)求证:BE=DC;
(2)若AD=4,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.
(1)求证:BC是⊙O的切线;
(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1) 求证:△ADE≌△CFE;
(2) 若GB=2,BC=4,BD=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于 ____________ .      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在圆内接四边形ABCD中,∠A∶∠B∶∠C=5∶2∶1,
  则∠D=_____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(易错题)把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形的长与宽之比为(  )
A.2:1B.
2
:1
C.5:2D.(1+
5
):2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )
 
A.45°B.54°C.40°D.50°

查看答案和解析>>

同步练习册答案