精英家教网 > 初中数学 > 题目详情
如图,MN切⊙O于A点,AC为弦,BC为直径,∠CAN=65°,则∠BMA的度数为______.
连接OA,
∵BC是⊙O直径,
∴∠BAC=90°,
∵∠CAN=65°,
∴∠BAM=180°-90°-65°=25°,
∵MN是⊙O切线,
∴∠OAN=90°,
∴∠OAC=90°-65°=25°,
∴∠OAB=90°-25°=65°,
∵OA=OB,
∴∠OBA=∠OAB=65°,
∴∠BMA=∠OBA-∠BAM=65°-25°=40°,
故答案为:40°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,直线y=
3
3
x-
3
与x轴、y轴分别交于A,B两点.现有半径为1的动圆P,且P的坐标为(n,0),若动圆P与直线AB交,则n的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA,PB是⊙O的切线,切点分别为A,B,且∠APB=50°,点C是优弧
AB
上的一点,则∠ACB的度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,BC是⊙O的切线,C是切点,AC是⊙O的弦,AO的延长线交BC于点B,设⊙O的半径为
5
,∠ACB=120°.求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA,PB分别切⊙O于点A和点B,C是
AB
上任一点,过C的切线分别交PA,PB于D,E.若⊙O的半径为6,PO=10,则△PDE的周长是(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
求证:AP是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA,PB分别切⊙O于A、B,∠APB=50°,BD是⊙O的直径,求∠ABD的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠PAQ是直角,⊙O与AP相切于点T,与AQ交于B、C两点.
(1)BT是否平分∠OBA,说明你的理由;
(2)若已知AT=4,弦BC=6,试求⊙O的半径R.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案