精英家教网 > 初中数学 > 题目详情
已知:如图,BC是⊙O的切线,C是切点,AC是⊙O的弦,AO的延长线交BC于点B,设⊙O的半径为
5
,∠ACB=120°.求AB的长.
连接OC.
∵BC是⊙O的切线,
∴OC⊥BC.
∴∠BCO=90°.
∵∠ACB=120°,
∴∠ACO=30°
∵OA=OC
∴∠A=∠ACO=30°
∴∠B=30°
在Rt△OCB中,
∵OC=OA=
5
,∠B=30°,
∴OB=2OC=2
5

∴AB=OA+OB=3
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,C为AB延长线上一点,CD与⊙O相切,切点为E,AD⊥CD于点D,交⊙O于点F,若⊙O的半径为2,设BC=x,DF=y,则y关于x的函数解析式为y=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,AC是⊙O的切线,且AB=AC,则∠C的度数是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一圆内切于四边形ABCD,且AB=8,CD=5,则AD+BC的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.
(1)BT是否平分∠OBA?证明你的结论;
(2)若已知AT=4,试求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.
(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);
(II)如图②,连接CD、CE,若四边形ODCE为菱形,求
OD
OA
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,MN切⊙O于A点,AC为弦,BC为直径,∠CAN=65°,则∠BMA的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知l1l2,点A、B在直线l1上,AB=4,过点A作AC⊥l2,垂足为C,AC=3.过点A的直线与直线l2交于点P,以点C为圆心,CP为半径作圆C(如图2).
(1)当CP=1时,求cos∠CAP的值;
(2)如果圆C与以点B为圆心,BA为半径的圆B相切,求CP的长;
(3)探究:当直线AP处于什么位置时(只要求出CP的长),将圆C沿着直线AP翻折后得到的圆C′恰好与直线l2相切?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦ACPM,连接OM、BC.
求证:(1)△ABC△POM;(2)2OA2=OP•BC.

查看答案和解析>>

同步练习册答案