精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠ACB=90°,点O、I分别为△ABC的外心和内心,AC=6,BC=8,则OI的值为


  1. A.
    2
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1
C
分析:如图,作△ABC的内切圆⊙I,过点I作ID⊥BC于D,IE⊥AC于E,IN⊥AB于N.先根据勾股定理求出AB=10,得到△ABC的外接圆半径AO=5,再证明四边形IECD是正方形,根据内心的性质和切线长定理
求出⊙I的半径r=2,则ON=1,然后在Rt△OIN中,运用勾股定理即可求解.
解答:解:如图,作△ABC的内切圆⊙I,过点I作ID⊥BC于D,IE⊥AC于E,IN⊥AB于N.
在Rt△ABC中,∵∠ACB=90°,AC=6,BC=8,
∴AB==10.
∵点O为△ABC的外心,
∴AO为外接圆半径,AO=AB=5.
设⊙I的半径为r,则ID=IE=r,
又∵∠IDC=∠IEC=∠C=90°,
∴四边形IECD是正方形,
∴CE=CD=r,AE=AN=6-r,BD=BN=8-r,
∵AB=10,
∴8-r+6-r=10,
解得r=2,
∴IN=r=2,AN=6-r=4.
在Rt△OIN中,∵∠INO=90°,ON=AO-AN=5-4=1,
∴OI==
故选C.
点评:此题考查了直角三角形的外心与内心的概念及性质,勾股定理,正方形的判定与性质,切线长定理,综合性较强,难度适中.求出△ABC的内切圆半径是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案