精英家教网 > 初中数学 > 题目详情
5.如图,以AD=2为直径的半圆O中,B、E是半圆弧的三等分点,则图中阴影部分的面积为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 连接OB、OE和BE,利用等底等高的三角形面积相等可知S阴影=S扇形BOE,利用扇形的面积公式计算即可.

解答 解:连接OB、OE和BE,
∵B,E是以AD为直径的半圆上的三等分点,AD=2,
∴∠BOE=60°,r=1,
∵△ABE的面积等于△OBE的面积,
∴S阴影=S扇形BOE=$\frac{60π×{1}^{2}}{360}$=$\frac{π}{6}$.
故选:D.

点评 本题考查扇形面积的计算,解题关键是根据“点B、E是以AD为直径的半圆的三等分点,求出圆的半径,继而利用扇形的面积公式求出S阴影=S扇形BOE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC交于点E,过点D作DF∥BE交AC于点F.
(1)求证,DF为⊙O的切线;
(2)若AB=5,BC=2$\sqrt{5}$,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)($\sqrt{2}+\sqrt{3}$)($\sqrt{2}-\sqrt{3}$)
(2)$\frac{\sqrt{20}+\sqrt{5}}{\sqrt{5}}-\sqrt{\frac{1}{3}}•\sqrt{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AB是半圆O的直径,C是AB延长线上一点,CD与半圆O相切于点D,连接AD,BD.
(1)求证:∠BAD=∠BDC;
(2)若sin∠BDC=$\frac{\sqrt{5}}{5}$,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某中学举行歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
求得初中代表队选手决赛成绩的平均数和方差:
$\overline{{x}_{1}}$=$\frac{75+80+85+85+100}{5}$=85,
${{S}_{1}}^{2}$=$\frac{1}{5}$[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70;
(1)根据图示填写表格:
  平均数(分)中位数(分)  众数(分)
 初中代表队8585 85
 高中代表队85  80100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算高中代表队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程组$\left\{\begin{array}{l}{x+\sqrt{2}y=3}\\{2{x}^{2}+{y}^{2}=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是$\frac{5}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不透明袋子中装有1个红球、1个绿球和1个白球,这些球除颜色外无其他差别,小明从这个袋子中随机摸出1个球后,放回并摇匀,再随机摸出1个球,则小明两次摸到的球中1个红球、1个绿球的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图所示,在矩形OABC中,以O为圆心,OA为半径作圆,交OC,于点D,连接BD并延长,交⊙O于点E,连接OE,EC,EC=BC.
(1)判断EC与⊙O的位置关系,并给予证明.
(2)过点A作AF⊥BD于点F,求证:BF=DF.

查看答案和解析>>

同步练习册答案