精英家教网 > 初中数学 > 题目详情
20、已知:如图,等腰梯形ABCD中,AB∥DC,E为DC的中点,求证:∠EAB=∠EBA.
分析:根据已知及等腰梯形的性质,利用SAS判定△ADE≌△BCE,从而可得到AE=BE,根据等边对等角即可得到结论.
解答:证明:∵四边形ABCD是等腰梯形,
∴AD=BC,∠D=∠C.(2分)
又∵E为DC中点,
∴DE=EC.
∴△ADE≌△BCE.(4分)
∴AE=BE.
∴∠EAB=∠EBA.(6分)
点评:此题主要考查学生对等腰梯形的性质及全等三角形的判定方法的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:如图在四边形ABCD中,对角线AC⊥BD,垂足为P.
求证:S四边形ABCD=
1
2
AC•BD.
证明:AC⊥BD?
S△ACD=
1
2
AC•PD
S△ABC=
1
2
AC•BP

∴S四边形ABCD=S△ACD+S△ACB=
1
2
AC•PD+
1
2
AC•BP
=
1
2
AC(PD+PB)=
1
2
AC•B D
解答问题:
(1)上述证明得到的性质可叙述为
 

(2)已知:如图,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3cm,BC=7cm,利用上述的性质求梯形的面积.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,求证:EB=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•昌平区二模)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求证:AB=AD;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,等腰梯形ABCD中,AB∥CD,对角线AC⊥BD于O,BC=13
2
,如果AB=a,CD=b,a+b=34,则a=
24
24
b=
10
10

查看答案和解析>>

同步练习册答案