精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ACB=90°,半径为1的⊙A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.
(1)连接AP,若∠B=30°,且△AEP与△BDP相似,则CE的长为______;
(2)若CE=2,BD=BC,则tan∠BPD的值为______.

解:(1)∵∠B=30°,∠ACB=90°,
∴∠BAC=90°-30°=60°,
∴△ADE是等边三角形,
在△BDP中,∠ADE=∠B+∠BPD,
即60°=30°+∠BPD,
解得∠BPD=30°,
∴∠B=∠BPD,
∴BD=PD,
∵△AEP与△BDP相似,
∴AE=PE,
∵⊙A的半径为1,
∴PE=1,
在Rt△PCE中,CE=PE=

(2)设BD=BC=x,
∵⊙A的半径为1,CE=2,
∴AB=x+1,AC=2+1=3,
∵∠ACB=90°,
∴AC2+BC2=AB2
即32+x2=(x+1)2
解得x=4,
过点C作CF∥DP交AB于点F,
==
=
解得DF=2,
∴BF=BD-DF=4-2=2,
又由CF∥DP可得=
=
解得CP=4,
∴tan∠BPD===
故答案为:(1),(2)
分析:(1)根据∠B=30°,∠ACB=90°可得∠BAC=60°,从而得到△ADE是等边三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPD=30°,然后根据等角对等边的性质可得BD=PD,再根据△AEP与△BDP相似可得PE=AE,然后根据30°角所对的直角边等于斜边的一半即可求解;
(2)设BD=BC=x,表示出AB、AC的长度,然后利用勾股定理列式求出x的值为4,过点C作CF∥DP交AB于点F,再根据平行线分线段成比例定理求出DF=2,然后求出BF的长度,再次利用平行线分线段成比例定理求出CP的长度,然后根据正切值的定义解答.
点评:本题考查了相似三角形的性质,等边三角形的判定与性质,勾股定理的应用,平行线分线段成比例定理,等角对等边的性质,利用计算中数据的相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案