精英家教网 > 初中数学 > 题目详情
如图,以O为圆心,OA长为半径画弧别交OM、ON于A、B两点,再分别以为A、B为圆心,以OA长为半径画弧,两弧交于点C,分别连接AC、BC,则四边形OACB一定是(  )
A、梯形B、菱形C、矩形D、正方形
考点:菱形的判定
专题:
分析:利用菱形的判定方法可以判定四边形ABCD是菱形.
解答:解:由题意可得:OA=OB=AC=BC,
则四边形ABCD是菱形.
故选:B.
点评:此题主要考查了基本作图以及菱形的判定,正确掌握菱形的判定方法是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,灌溉渠的横截面是等腰梯形,底宽为2米,坡角为45°,水深为x米,横截面有水的面积为y平方米,y是x的函数,则函数图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)a•a4÷a3
(2)(-x)6÷(-x)2•(-x)3
(3)27x8÷3x4
(4)-12m3n3÷4m2n3
(5)(6x2y3z22÷4x3y4
(6)(-6a2b5c)÷(-2ab22

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-
1
2
x2+
3
2
x+2
与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.
(1)求点A、B、C的坐标.
(2)点P为AB上的动点(点A、O、B除外),过点P作直线PN⊥x轴,交抛物线于点N,交直线BC于点M.设点P到原点的值为t,MN的长度为s,求s与t的函数关系式.
(3)在(2)的条件下,试求出在点P运动的过程中,由点O、P、N围成的三角形与Rt△COB相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点O为坐标原点,等腰△ABC,CA=CB,点A在x轴负半轴上,点B在x轴正半轴上,点C在y轴正半轴上,AB=OC,△ABC的面积为32,点D为AC中点,过点D作x轴的平行线交y轴于点E.
(1)求直线AC解析式及点E坐标;
(2)直线AC以1个单位/秒的速度水平向右平移,平移的时间为t(t>0)秒,直线AC平移后分别交x轴,y轴于点M,N,设NE的长为y,求y与t之间的函数关系,并写出相应的自变量t的取值范围;
(3)在(2)的条件下,点P为直线DE上一点,是否存在t值使△MNP为等腰直角三角形?若存在求t值及EP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,直线y=-x-4分别交x轴、y轴于A,B,交双曲线y=
k
x
(x<0)于M,连OM,且S△OBM=16.
(1)求k的值.
(2)过M作MN⊥y轴于N,在直线AB上是否存在点E,使OEN的周长最小?若存在,求E点的坐标;否则说明理由;
(3)如图2,在(2)的条件下,P为双曲线上一动点,点Q为PB上一点,且AQ=AB,连MQ,NQ,求证:BQ-MQ=
2
NQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直线坐标中,A(-1,0),点C为y轴正半轴上一点,且AC=
10
,B为x轴正半轴上一点,CB=3
2

(1)求B点坐标;
(2)直线t:x=1是线段AB的垂直平分线,在直线t上是否存在点M,使M、A、C三点构成的△MAC为等腰三角形?若存在,直接写出M点坐标;若不存在,请说明理由.
(3)设点P为直线t上一动点,且满足△PAC周长最小,当点D在线段OC上运动时,过点D作DE∥BC交x轴于点E,连PE、PD,且CD=m>0,请求出△PDE面积S与m函数关系式,并求当CD为多长时,S△PDE面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,函数y=
1
x
(x>0)和y=
3
x
(x>0)的图象分别是l1和l2.设点P在l2上,PA∥y轴,交l1于点A,PB∥x轴,交l1于点B,则△PAB的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

n边形内角和等于1260°,则n=(  )
A、7B、8C、9D、10

查看答案和解析>>

同步练习册答案