精英家教网 > 初中数学 > 题目详情

【题目】“一方有难,八方支援”,雅安芦山420地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(
A.60
B.70
C.80
D.90

【答案】C
【解析】解:设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需 人,
根据题意,得:2x+ ≤200,
解得:x≤80,
∴最多可搬桌椅80套,
故选:C.
设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需 人,根据总人数列不等式求解可得.本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD内接于⊙O, =2:3:5,∠BAD=120°,则∠ABC的度数为(
A.100°
B.105°
C.120°
D.125°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.

(1)AE的长等于
(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(Ⅱ)的条件下,边OA上 的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S2= ,平均成绩 =8.5.

(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
S2= [(x12+(x22…(xn2].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动 周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动 周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

(1)试验观察:

如果经过两点画直线,那么:

组最多可以画____条直线;

组最多可以画____条直线;

组最多可以画____条直线.

(2)探索归纳:

如果平面上有n(n≥3)个点,且任意3个点均不在1条直线上,那么经过两点最多可以画____条直线.(用含n的式子表示)

(3)解决问题:

某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握____次手.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论: ① =
②△OGH是等腰三角形;
③四边形OGBH的面积随着点E位置的变化而变化;
④△GBH周长的最小值为4+
其中正确的是(把你认为正确结论的序号都填上).

查看答案和解析>>

同步练习册答案