精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠C=90°,∠A=30°.
(1)以直角边AC所在的直线为对称轴,将Rt△ABC作轴对称变换,请在原图上作出变换所得的像;
(2)Rt△ABC和它的像组成了什么图形?最准确的判断是(
 
);
(3)利用上面的图形,你能找出直角边BC与斜边AB的数量关系吗?并请说明理由.
分析:(1)延长BC到D,使CD=BC,连接AD即可;
(2)根据三角形内角和定理可得∠B=60°,根据作图可得∠BAD=60°,三个角都是60°,那么是等边三角形;
(3)BC=BD的一半,也就是AB的一半.
解答:解:(1)作图如右图:
精英家教网.(2分)
(2)Rt△ABC和它的像组成了什么图形最准备的判断是(等边三角形)(2分)

(3)AB=2BC.(2分)
∵∠C=90°,∠A=30°,
∴∠B=60°.
∵△ABC≌△ADC,
∴∠DAC=∠BAC=30°.
∴∠BAD=60°.
∴△ABD是等边三角形.
∴AB=DB.
∵CD=BC,
∴BC=
1
2
BD.
∴BC=
1
2
BA.(4分)
点评:关于轴对称的两个图形是全等形;各对应点的连线被对称轴垂直平分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案