精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求PQ的长;

(2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

(3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

【答案】(1);(2)t=;(3)当t5.5秒或6秒或6.6秒时BCQ为等腰三角形

【解析】

试题(1)根据点PQ的运动速度求出AP,再求出BPBQ,用勾股定理求得PQ即可;

2)设出发秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=BP=,列式求得即可;

3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得

CQ=BC时(如图2),则BC+CQ=12,易求得

BC=BQ时(如图3),过B点作BE⊥AC于点E,则求出BECE,即可得出

试题解析:(1BQ=2×2=4cmBP=AB﹣AP=8﹣2×1=6cm∵∠B=90°

PQ=

2BQ=BP=,解得:

3CQ=BQ时(图1),则∠C=∠CBQ∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∴CQ=AQ=5∴BC+CQ=11=11÷2=5.5秒.

CQ=BC时(如图2),则BC+CQ=12=12÷2=6秒.

BC=BQ时(如图3),过B点作BE⊥AC于点E,则BE=,所以CE=,故CQ=2CE=7.2,所以BC+CQ=13.2=13.2÷2=6.6秒.

由上可知,当5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)求证:AB=AC

2)已知SABC40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),

①若DMN的边与BC平行,求t的值;

②若点E是边AC的中点,问在点M运动的过程中,MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正确结论的选项是(

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AB=BC=2,D为BC的中点,在AC边上存在一点E,连结ED,EB,则△BDE周长的最小值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的角平分线上的一点,的中点,点上的一个动点,若的最小值为,则的长度为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=kx2﹣7x﹣7的图象与x轴没有交点,则k的取值范围为(
A.k>﹣
B.k≥﹣ 且k≠0
C.k<﹣
D.k>﹣ 且k≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据条件求二次函数的解析式
(1)二次函数y=ax2+bx+c的对称轴为x=3,最小值为﹣2,且过(0,1)点.
(2)抛物线过(﹣1,0),(3,0),(1,﹣5)三点.

查看答案和解析>>

同步练习册答案