分析 (1)设去年A型车每辆售价x元,则今年售价每辆为(x-200)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.
解答 解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x-200)元,由题意,得
$\frac{80000}{x}$=$\frac{80000(1-10%)}{x-200}$,
解得:x=2000.
经检验,x=2000是原方程的根.
答:去年A型车每辆售价为2000元;
(2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由题意,得
y=(1800-1500)a+(2400-1800)(60-a),
y=-300a+36000.
∵B型车的进货数量不超过A型车数量的两倍,
∴60-a≤2a,
∴a≥20.
∵y=-300a+36000.
∴k=-300<0,
∴y随a的增大而减小.
∴a=20时,y有最大值
∴B型车的数量为:60-20=40辆.
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
点评 本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x+y=12}\\{12%x+8%y=14}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=12}\\{(1+12%)x+(1+8%)y=14}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=14}\\{12%x+8%y=12}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=14}\\{(1+12%)x+(1+8%)y=12}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 分组(分) | 频数 | 频率 |
| 50<x 60 | 2 | 0.04 |
| 60<x 70 | 12 | a |
| 70<x<80 | b | 0.36 |
| 80<x 90 | 14 | 0.28 |
| 90<x 100 | c | 0.08 |
| 合计 | 50 | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com