精英家教网 > 初中数学 > 题目详情
11.阅读下列材料:
在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt△ABC中,∠ACB=90°,AB=1,∠A=α,求sin2α(用含sinα,cosα的式子表示).
聪明的小雯同学是这样考虑的:如图2,取AB的中点O,连接OC,过点C作CD⊥AB于点D,则∠COB=2α,然后利用锐角三角函数在Rt△ABC中表示出AC,BC,在Rt△ACD中表示出CD,则可以求出
sin2α=$\frac{CD}{OC}$=$\frac{sinα•AC}{{\frac{1}{2}}}$=$\frac{sinα•cosα}{{\frac{1}{2}}}$=2sinα•cosα.
阅读以上内容,回答下列问题:
在Rt△ABC中,∠C=90°,AB=1.
(1)如图3,若BC=$\frac{1}{3}$,则 sinα=$\frac{1}{3}$,sin2α=$\frac{4\sqrt{2}}{9}$;
(2)请你参考阅读材料中的推导思路,求出tan2α的表达式(用含sinα,cosα的式子表示).

分析 (1)根据三角函数进行解答即可;
(2)利用直角三角形中的三角函数解答即可.

解答 解:(1)sinα=$\frac{1}{3}$,cosα=$\frac{2\sqrt{2}}{3}$,可得:sin2α=$\frac{{4\sqrt{2}}}{9}$;
故答案为:$\frac{1}{3}$;$\frac{4\sqrt{2}}{9}$
(2)∵AC=cosα,BC=sinα,
∴CD=$\frac{AC×BC}{AB}$=sinα•cosα.
∵∠DCB=∠A,
∴在Rt△BCD中,BD=sin2α.
∴OD=$\frac{1}{2}$-sin2α.
∴tan2α=$\frac{CD}{OD}$=$\frac{sinα•cosα}{\frac{1}{2}-si{n}^{2}α}=\frac{2sinα•cosα}{1-2si{n}^{2}α}$.

点评 本题通过题目提供信息考查了解直角三角形,读懂题目信息并根据信息表示出三角形的三角函数是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.下列二次根式的运算:①$\sqrt{2}×\sqrt{6}=2\sqrt{3}$,②$\sqrt{18}-\sqrt{8}=\sqrt{2}$,③$\frac{2}{{\sqrt{5}}}=\frac{{2\sqrt{5}}}{5}$,④$\sqrt{{{(-2)}^2}}=-2$;其中运算正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=ax2-2ax+8分别交x轴于点A,B(点A在点B左侧),交y轴于点C,AB=6.
(1)求a的值;
(2)点D为抛物线的顶点,点Q在线段BD上,过点Q作QH⊥x轴于点H,在HQ的延长线上取点N,连接BN,在x轴上点H的左侧取点M,连接QM,且MH=6,若tan∠NBH-tan∠MQH=3,求QN的长;
(3)在(2)的条件下,在AD上取点P,使得AP=DQ,若∠DPQ+∠PQB=90°,求点P的坐标,并判断此时点N是否在抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.化简$\frac{16-{a}^{2}}{{a}^{2}+4a+4}$÷$\frac{a-4}{2a+4}$•$\frac{a-2}{a+4}$,其结果是(  )
A.-2B.2C.-$\frac{2(a-2)}{a+2}$D.$\frac{2}{(a+2)^{2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系 xOy中,对于点P(x,y),以及两个无公共点的图形W1和W2,若在图形W1和W2上分别存在点M (x1,y1 )和N (x2,y2 ),使得P是线段MN的中点,则称点M 和N被点P“关联”,并称点P为图形W1和W2的一个“中位点”,此时P,M,N三个点的坐标满足x=$\frac{{{x_1}+{x_2}}}{2}$,y=$\frac{{{y_1}+{y_2}}}{2}$
(1)已知点A(0,1),B(4,1),C(3,-1),D(3,-2),连接AB,CD.
①对于线段AB和线段CD,若点A和C被点P“关联”,则点P的坐标为($\frac{3}{2}$,0);
②线段AB和线段CD的一“中位点”是Q (2,-$\frac{1}{2}$),求这两条线段上被点Q“关联”的两个点的坐标;
(2)如图1,已知点R(-2,0)和抛物线W1:y=x2-2x,对于抛物线W1上的每一个点M,在抛物线W2上都存在点N,使得点N和M 被点R“关联”,请在图1 中画出符合条件的抛物线W2
(3)正方形EFGH的顶点分别是E(-4,1),F(-4,-1),G(-2,-1),H(-2,1),⊙T的圆心为T(3,0),半径为1.请在图2中画出由正方形EFGH和⊙T的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,l1∥l2∥l3,BC=1,$\frac{DF}{EF}$=3,则AB长为(  )
A.4B.2C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.

根据以上信息,解答下列问题:
(1)参加调查的人数共有300人,在扇形统计图中,表示“C”的扇形的圆心角为108度;
(2)补全条形统计图,并计算扇形统计图中m的值;
(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.甲、乙两个口袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x,y分别作为点A的横坐标和纵坐标.
(1)请用列表或画树状图法,表示出点A(x,y)所有可能出现的结果;
(2)求点A在第三象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,下列条件中,能判定DE∥AC的是(  )
A.∠BED=∠EFCB.∠1=∠2C.∠BEF+∠B=180°D.∠3=∠4

查看答案和解析>>

同步练习册答案