精英家教网 > 初中数学 > 题目详情
1.如图,下列条件中,能判定DE∥AC的是(  )
A.∠BED=∠EFCB.∠1=∠2C.∠BEF+∠B=180°D.∠3=∠4

分析 可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断.

解答 解:A、∠BED=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行,故选项错误;
B、∠1=∠2是EF和BC被EC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC,故选项错误;
C、∠BEF+∠B=180°是EF和BC被AB所截得到的同旁内角,因而可以判定EF∥BC,但不能判定DE∥AC,故选项错误;
D、∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC,故选项正确.
故选:D.

点评 考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.阅读下列材料:
在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt△ABC中,∠ACB=90°,AB=1,∠A=α,求sin2α(用含sinα,cosα的式子表示).
聪明的小雯同学是这样考虑的:如图2,取AB的中点O,连接OC,过点C作CD⊥AB于点D,则∠COB=2α,然后利用锐角三角函数在Rt△ABC中表示出AC,BC,在Rt△ACD中表示出CD,则可以求出
sin2α=$\frac{CD}{OC}$=$\frac{sinα•AC}{{\frac{1}{2}}}$=$\frac{sinα•cosα}{{\frac{1}{2}}}$=2sinα•cosα.
阅读以上内容,回答下列问题:
在Rt△ABC中,∠C=90°,AB=1.
(1)如图3,若BC=$\frac{1}{3}$,则 sinα=$\frac{1}{3}$,sin2α=$\frac{4\sqrt{2}}{9}$;
(2)请你参考阅读材料中的推导思路,求出tan2α的表达式(用含sinα,cosα的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某地区教育部门为了了解本地九年级学生每周“阳光体育活动”的时间情况,随机调査了本地部分九年级学生,把收集到的数据进行整理并制成了以下两幅统汁图.学生“阳光体育活动”的时间x(h)分为五个等级:A(x≤4),B(4<x≤6),C(6<x≤8),D(8<x≤l0>,E(x>10).
(1)本次共调查了多少名学生?
(2)补全条形统计图,扇形统计图中的m=30.
(3)我们把A,B,C,D,E各等级时间(单位:h)看成3,5,7,9,11.求被调查学生平均每周的活动时间.
(4)已知该地九年级学生有8000名,请你估计每周“阳光体育活动”时间大于6h的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.关于x的不等式2x+a≤-3的解集如图所示,则a的取值是(  )
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,矩形ABCD中,AD=5,AB=8,点E为DC上一个动点,把△ADE沿AE折叠,若点D的对应点D′,连接D′B和D′C,以下结论中:
①D′B的最小值为3; 
②CD′的最小值是$\sqrt{89}-5$
③DE=$8-\sqrt{39}$时,△ABD′是直角三角形;
④当DE=$\frac{5}{2}$时,△ABD′是等腰三角形.
其中正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列命题中,是真命题的是(  )
①两条直线被第三条直线所截,同位角相等;
②在同一平面内,垂直于同一直线的两条直线互相平行
③三角形的三条高中,必有一条在三角形的内部
④$\sqrt{-2}$是一个负数.
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:
(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;
(2)将条形统计图补充完整;
(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算
(1)|$\sqrt{2}$-$\sqrt{3}$|+2$\sqrt{2}$
(2)$\sqrt{3}$($\sqrt{3}$+$\frac{1}{\sqrt{3}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,点O是平行四边形ABCD的对角线的交点,则图中全等三角形共有(  )
A.4对B.3对C.2对D.1对

查看答案和解析>>

同步练习册答案