精英家教网 > 初中数学 > 题目详情
AC、BD是平行四边形ABCD两条对角线,现从以下四个关系式①AB=BC,②AC=BD,③AC⊥BD,④AB⊥BC中,任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为(    )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、如图,在平行四边行ABCD中,对角线AC和BD相交于点O,则下面条件能判定平行四边行ABCD是矩形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图,下列条件之一能使平行四边行ABCD是菱形的为(  )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•毕节地区)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.
(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是
平行四边
平行四边
形;
(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为
90
90
度;连接CC′,四边形CDBC′是
直角梯
直角梯
形;
(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,不一定成立的是(     )

(A)四边形ABCD是平行四边   (B)ACBD

(C)△ABD是等边三角形       (D)∠CAB=∠CAD

 


查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A、B是直线上的两个定点,点C、D在直线上运动(点C在点D的左侧),AB=CD=6cm,已知//,连接AC、BD、BC,把沿BC折叠得.

问题1:当、D两点重合时,则AC=___________cm;

问题2:当、D两点不重合时,连接,可探究发现

       下面是小明的思考:

(1)将沿BC翻折,点A关于直线BC的对称点为,连接交BC所在直线于点M,由轴对称的性质,得,这一关系在变化过程中保持不变.

(2)因为四边形ABCD是平行四边,设对角线的交点是O,易知,这一关系在变化过程中也保持不变。

请你借助于小明的思考,说明的理由。

问题3:当、D两点不重合时,若直线间的距离为cm,且以点为顶点的四边形是矩形,求AC的长。

查看答案和解析>>

同步练习册答案