【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1 100元,请问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并指出获利最大的购货方案.
【答案】(1)甲种100件,乙种60件;(2)有两种构货方案.方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.
【解析】试题分析:(1)设甲种商品应购进x件,乙种商品应购进y件,根据“需要购进甲、乙两种商品共160件,销售完这批商品后能获利1100元”即可列方程组求解;
(2)设甲种商品购进a件,则乙种商品购进(160-a)件,根据“计划投入资金少于4300元,且销售完这批商品后获利多于1260元”即可列不等式组求解.
(1)设甲种商品应购进x件,乙种商品应购进y件,由题意得
,解得
答:甲种商品购进100件,乙种商品购进60件;
(2)设甲种商品购进a件,则乙种商品购进(160-a)件,由题意得
,解得 65<a<68
∵a为非负整数,
∴a取66,67.
∴160-a相应取94,93.
答:有两种构货方案.方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.
科目:初中数学 来源: 题型:
【题目】某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.
(1)求一次函数解析式及反比例函数的解析式;
(2)若一次函数值大于反比例函数值,请求出相应的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.
(1)随机地从箱子里取出1个球,则取出红球的概率是多少?
(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)解题探究
已知三角形ABC,探究∠A+∠B+∠C等于多少度?(提示:过一点作平行线)
(2)发现规律
如图①,三角形ABC中,点D在BC的延长线上,试说明∠A+∠B与∠1的关系?
(3)运用规律
利用以上规律,快速探究以下各图:
当AB∥CD时,∠A,∠C,∠P的关系式为(直接填空,不要证明过程):
∠C = ,∠C = ,∠C =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com