我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?
打折前一次性购物总金额 | 优惠措施 |
不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
解:(1)设甲商品购进x件,则乙商品购进(100﹣x)件,由题意,得
y=(20﹣15)x+(45﹣35)(100﹣x)=﹣5x+1000,
∴y与x之间的函数关系式为:y=﹣5x+1000。
(2)由题意,得15x+35(100﹣x)≤3000,
解得x≥25。
∵y=﹣5x+1000中k=﹣5<0,∴y随x的增大而减小。
∴当x取最小值25时,y最大值,此时y=﹣5×25+1000=875(元)。
∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元。
(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.
①当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元),
则20m+45n=360,m=18﹣n>0,∴0<n<8.
∵n是4的倍数,∴n=4,m=9。
此时的利润为:324﹣(15×9+35×4)=49(元)。
②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元),
则20m+45n=405,m=>0,∴0<n<9。
∵m、n均是正整数,∴m=9,n=5或m=18,n=1。
当m=9,n=5的利润为:324﹣(9×15+5×35)=14(元);
当m=18,n=1的利润为:324﹣(18×15+1×35)=19(元)。
综上所述,商家可获得的最小利润是14元,最大利润各是49元。
【解析】
试题分析:(1)根据利润=甲种商品的利润+乙种商品的利润就可以得出结论。
(2)根据“商家计划最多投入3000元用于购进此两种商品共100件”列出不等式,解不等式求出其解,再根据一次函数的性质,求出商家可获得的最大利润。
(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.分两种情况讨论:①打折前一次性购物总金额不超过400;②打折前一次性购物总金额超过400。
科目:初中数学 来源: 题型:
打折前一次性购物总金额 | 优惠措施 |
不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
查看答案和解析>>
科目:初中数学 来源:2013年广西梧州市中考数学试卷(解析版) 题型:解答题
打折前一次性购物总金额 | 优惠措施 |
不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
查看答案和解析>>
科目:初中数学 来源:2013年初中毕业升学考试(广西梧州卷)数学(解析版) 题型:解答题
我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?
打折前一次性购物总金额 |
优惠措施 |
不超过400元 |
售价打九折 |
超过400元 |
售价打八折 |
查看答案和解析>>
科目:初中数学 来源:梧州 题型:解答题
打折前一次性购物总金额 | 优惠措施 |
不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com