精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,AB=20,BC=10,若在AB、AC上各取一点N、M,使得BM+MN的值最小,这个最小值为


  1. A.
    12
  2. B.
    10数学公式
  3. C.
    16
  4. D.
    20
C
分析:作B关于AC的对称点B′,连AB′,则N点关于AC的对称点N′在AB′上,这时,B到M到N的最小值等于B→M→N′的最小值,等于B到AB′的距离BH′,连B与AB′和DC的交点P,再由三角形的面积公式可求出S△ABP的值,根据对称的性质可知∠PAC=∠BAC=∠PCA,利用勾股定理可求出PA的值,再由S△ABP=PA•BH′即可求解.
解答:解:如图,作B关于AC的对称点B′,
连AB′,则N点关于AC的对称点N′在AB′上,
这时,B到M到N的最小值等于B→M→N′的最小值,
等于B到AB′的距离BH′,
连B与AB′和DC的交点P,
则S△ABP=×20×10=100,
由对称知识,∠PAC=∠BAC=∠PCA,
所以PA=PC,令PA=x,则PC=x,PD=20-x,
在Rt△ADP中,PA2=PD2+AD2
所以x2=(20-x)2+102
所以x=12.5,
因为S△ABP=PA•BH′,
所以BH′=
点评:本题考查的是最短路线问题及轴对称的性质,作出B点关于直线AC对称的点B′是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案