【题目】已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x轴正半轴上的点,连接AB,AC,BC.
(1)如图1,若OB=1,OC =,且A,B,C在同一条直线上,求t的值;
(2)如图 2,当 t =1,∠ACO +∠ACB = 180°时,求 BC + OC -OB 的值;
【答案】(1)t=3(2)2.
【解析】
(1)根据OB=1,OC =得到直线BC的解析式,令y=1,即可求出t的值;
(2)延长BC至D根据∠ACO +∠ACB = 180°得到AC平分∠OCD,作AG⊥OC,AH⊥BD,根据角平分线的性质得到AG=AH,作AE⊥y轴,由A(1,1)得到AE=AG=AH=1,作AF=AC交y轴于F点,,作AF=AC交y轴于F点,根据HL可证明△AEF≌△AGC,△ABE≌△ABH,则EF=CH,BC=BF,故BC + OC –OB=BF+OG+GC-OB=OB+OF+OG+GC-OB=OF+GC+OG= OF+EF+OG=OE+OG=2.
(1)根据OB=1,OC =
∴B(0,-1),C(,0),
设直线BC的解析式为y=kx+b,
代入得
解得
∴直线BC的解析式为y=x-1,令y=1,
即x=3,
故t=3.
(2)延长BC至D
∵∠ACO +∠ACB = 180°
∴∠ACO=∠ACD,
∴AC平分∠OCD,
作AG⊥OC,AH⊥BD,
∴AG=AH,
作AE⊥y轴,∵A(1,1)得到AE=AG=AH=1,
在y轴上找一点F,使AF=AC,
∵AE=AG,
∠AEF=∠AGC=90°,AF=AC
∴△AEF≌△AGC(HL),
∴EF=CG,
同理可得△ABE≌△ABH,
∴BE=BH,
∴BF=BE-EF,BC=BH-CH
则BC=BF,
故BC+OC–OB=BF+OG+GC-OB=OB+OF+OG+GC-OB=OF+GC+OG= OF+EF+OG=OE+OG
=2.
科目:初中数学 来源: 题型:
【题目】在 Rt 中,, ,点 为射线 上一点,连接 ,过点 作线段 的垂线 ,在直线 上,分别在点 的两侧截取与线段 相等的线段 和 ,连接 ,.
(1)当点 在线段 上时(点 不与点 , 重合),如图1,
①请你将图形补充完整;
②线段 , 所在直线的位置关系为 ,线段 , 的数量关系为/span> ;
(2)当点 在线段 的延长线上时,如图2,
①请你将图形补充完整;
②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线经过,两点,抛物线与x轴的另一交点为A,连接AC、BC.
求抛物线的解析式及点A的坐标;
若点D是线段AC的中点,连接BD,在y轴上是否存一点E,使得是以BD为斜边的直角三角形?若存在,求出点E的坐标,若不存在,说明理由;
如图2,P为抛物线在第一象限内一动点,过P作于Q,当PQ的长度最大时,在线段BC上找一点M使的值最小,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.
(1)A比B后出发几个小时?B的速度是多少?
(2)在B出发后几小时,两人相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB的解析式为,抛物线与y轴交于点A,与x轴交于点,点P是抛物线上一动点,设点P的横坐标为m.
求抛物线的解析式;
如图,当点P在第一象限内的抛物线上时,求面积的最大值,并求此时点P的坐标;
过点A作直线轴,过点P作于点H,将绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴分别交于A(1,0),B(3,,0)两点,与轴交于点C.
(1)求此二次函数解析式;
(2)点D为抛物线的顶点,试判断的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com