【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点. ![]()
(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;
(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.
【答案】
(1)解:∵该抛物线过点C(0,2),
∴可设该抛物线的解析式为y=ax2+bx+2.
将A(﹣1,0),B(4,0)代入,
得
,
解得
,
∴抛物线的解析式为:y=﹣
x2+
x+2.
(2)解:存在.
由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.
![]()
在Rt△BOC中,OC=2,OB=4,
∴BC=
=2
.
在Rt△BOC中,设BC边上的高为h,则
×2
h=
×2×4,
∴h=
.
∵△BEA∽△COB,设E点坐标为(x,y),
∴
=
,
∴y=±2
将y=2代入抛物线y=﹣
x2+
x+2,
得x1=0,x2=3.
当y=﹣2时,不合题意舍去.
∴E点坐标为(0,2),(3,2).
(3)解:如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,
![]()
∴∠BED=∠BFD=∠AFB=90°.
设BC的解析式为y=kx+b,由图象,得
,
∴
,
yBC=﹣
x+2.
由BC∥AD,设AD的解析式为y=﹣
x+n,由图象,得
0=﹣
×(﹣1)+n
∴n=﹣
,
yAD=﹣
x﹣
.
∴﹣
x2+
x+2=﹣
x﹣
,
解得:x1=﹣1,x2=5
∴D(﹣1,0)与A重合,舍去;
∴D(5,﹣3).
∵DE⊥x轴,
∴DE=3,OE=5.
由勾股定理,得BD=
.
∵A(﹣1,0),B(4,0),C(0,2),
∴OA=1,OB=4,OC=2.
∴AB=5
在Rt△AOC中,Rt△BOC中,由勾股定理,得
AC=
,BC=2
,
∴AC2=5,BC2=20,AB2=25,
∴AC2+BC2=AB2
∴△ACB是直角三角形,
∴∠ACB=90°.
∵BC∥AD,
∴∠CAF+∠ACB=180°,
∴∠CAF=90°.
∴∠CAF=∠ACB=∠AFB=90°,
∴四边形ACBF是矩形,
∴AC=BF=
,
在Rt△BFD中,由勾股定理,
得DF=
,
∴DF=BF,
∴∠ADB=45°.
【解析】(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;(2)由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.由相似关系求出点E的坐标;(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,由BC∥AD设BC的解析式为y=kx+b,设AD的解析式为y=kx+n,由待定系数法求出一次函数的解析式,就可以求出点D坐标,由勾股定理就可以求出BD的值,由勾股定理的逆定理就可以得出∠ACB=90°,由平行线的性质就可以得出∠CAD=90°,就可以得出四边形ACBF是矩形,就可以得出BF的值,由勾股定理求出DF的值,而得出DF=BF而得出结论.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.
科目:初中数学 来源: 题型:
【题目】汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图
).图
是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形
、正方形
、正方形
的面积分别为
、
、
.若
,则
的值是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的两点OA、OC分别在x轴、y轴的正半轴上,点G为矩形对角线的交点,经过点G的双曲线y=
在第一象限的图象与BC相交于点M,交AB于N,若已知S△MBN=9,则k的值为 . ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。
![]()
(1)试判断B'E与DC的位置关系并说明理由。
(2)如果∠C=130°,求∠AEB的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=
;③当0<t≤10时,y=
t2; ④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是 . ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,△OAB如图放置,点A的坐标为(3,4),点P是AB边上的一点,过点P的反比例函数
与OA边交于点E,连接OP.![]()
(1)如图1,若点B的坐标为(5,0),且△OPB的面积为
,求反比例函数的解析式;
(2)如图2,过P作PC∥OA,与OB交于点C,若
,并且△OPC的面积为
,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
![]()
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com