分析 延长PF、EB交于点G;连接EF,易证△BGF≌△CPF,则点F为PG的中点,FP=FG=FE,则∠FPC=∠FGB=∠GEF;连接AC,则∠GEF=∠BAC=$\frac{1}{2}$∠BAD=55°,进而可求出∠FPC的度数.
解答
解:延长PF、EB交于点G;连接EF,
∵四边形ABCD是菱形,
∴AG∥DC,
∴∠GBF=∠PCF,
∵F是BC中点,
∴BF=CF,
在△BGF和△CPF中,
$\left\{\begin{array}{l}{∠GBF=∠PCF}\\{BF=CF}\\{∠BFG=∠CFP}\end{array}\right.$,
∴△BGF≌△CPF,
∴PF=GF,
∴点F为PG的中点,
∵∠GEP=90°,
∴FP=FG=FE,
∴∠FPC=∠FGB=∠GEF,
连接AC,
则∠GEF=∠BAC=$\frac{1}{2}$∠BAD=55°,
∴∠FPC的度数是55°,
故答案为:55°.
点评 本题考查了菱形的性质、全等三角形的判定和性质、直角三角形斜边上的中线的性质,题目的综合性较强难度较大,解题的关键是正确添加辅助线,构造全等三角形,从而得到点F为PG的中点.
科目:初中数学 来源: 题型:选择题
| A. | 8.25×107 | B. | 8.25×106 | C. | 82.5×105 | D. | 0.825×107 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x轴正半轴上 | B. | y轴正半轴上 | C. | x轴负半轴上 | D. | y轴负半轴上 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com