精英家教网 > 初中数学 > 题目详情

【题目】小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第回到家中.设小明出发第时的速度为,离家的距离为之间的函数关系如图所示(图中的空心圈表示不包含这一点).

(1)小明出发第时离家的距离为______m

2)当时,求之间的函数表达式;

3)直接写出之间的函数关系式并画出图象.

【答案】1200;(2s160t1202t5);(3S=,函数图像见解析

【解析】

1)根据路程=速度×时间求出小明出发第2min时离家的距离即可;

2)当2t5时,离家的距离s=前面2min走的路程加上后面(t2min走过的路程列式即可;

3)根据小明是往返用了16分钟,往返的路程是一样的,根据往返路程相等,计算出的6.25min时小明开始往回走,再分类讨论:0t22t55t6.256.25t16四种情况,画出各自的图形即可求解.

1100×2200m).

故小明出发第2min时离家的距离为200m

故答案为:200

2)当2t5时,s100×2160t2)=160t120

st之间的函数表达式为s160t1202t5);

3)设x分钟时,小明开始往回走

依题意可得100×2+160×5-2+80×x-5=80×(16-x

解得x=6.25

t=6.25时,s=100×2+160×5-2+80×6.25-5=780

∴当5t6.25时,s=100×2+160×5-2+80×t-5=80t280

6.25t16时,s=780-80×t-6.25=128080t

st之间的函数关系式为S=

故函数图像如图如下:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(不与点A重合),∠BPC=∠BPA,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x

(1)CD的长度是否随着x的变化而变化?若变化,用含x的代数式表示CD的长度;若不变化,求出线段CD的长度;
(2)△PBC的面积是否存在最小值?若存在,请求出这个最小值,并求出此时的x的值;若不存在,请说明理由;
(3)当x取何值时,△ABP和△CDP相似;
(4)如图2,当以C为圆心,以CP为半径的圆与线段AB有公共点时,求x的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,点与点关于轴对称.

1)求直线的函数表达式;

2)设点轴上的一个动点,过点轴的平行线,交直线于点,交直线于点,连接

①若,求点的坐标;

②若的面积为,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC8AB6,则线段CE的长度是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).

(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积.
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中描出下列各点:A(30)B(-43),C(4, 2),并解答:

1)点A到原点O的距离是 个单位长度;

2)将点B向下平移__________个单位,它会与点C重合;

3)连接BC,直线BCy轴的位置关系是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是(

A.①②③
B.③④⑤
C.①②④
D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD//ABBD平分ABCCE平分DCFACE=90°

(1)请问BDCE是否平行?请你说明理由;

(2)ACBD有何位置关系?请你说明判断的理由。

查看答案和解析>>

同步练习册答案