精英家教网 > 初中数学 > 题目详情
在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD=   
【答案】分析:根据直角三角形中的射影定理来做:AD2=BD•CD.
解答:解:
∵△ABC是直角三角形,AD是斜边BC上的高,
∴AD2=BD•CD(射影定理),
∵BD=4,CD=9,
∴AD=6.
点评:本题主要考查了直角三角形的性质:射影定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,则斜边AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则tan∠B=(  )
A、
3
5
B、
4
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于F,且BE平分∠ABC,则∠A=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠A=90°,BC边上的垂直平分线交AC于点D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,则△BDE的周长为
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步练习册答案