精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2
6
,AE=6
2
,求BD的长.
分析:(1)根据切线的判定定理,垂直经过半径外端直线是圆的切线,连接OE,只要得出EO⊥EC即可得出;
(2)由切割线定理,得:AE2=AD•AB,根据切割线定理即可求出BD的长,由此得解.
解答:精英家教网(1)证明:连接OE,
∵BE平分∠ABC交AC于点E,
∴∠1=∠EBC,
∵∠1=∠2,
∴∠2=∠CBE,
∴∠AEO=∠C=90°,
∴AC是△BDE的外接圆的切线;

(2)解:∵AE是圆O的切线,AB是圆的割线,
根据切割线定理:AE2=AD×AB,
AD=2
6
,AE=6
2

∴(6
2
2=2
6
×(2
6
+BD),
解得:BD=4
6

∴BD的长是:4
6
点评:此题主要考查了切线的判定定理与切割线定理,此定理是初中阶段非常重要的定理,同学们应正确把握此定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案