精英家教网 > 初中数学 > 题目详情

如图,⊙O为△ABC的外接圆,弦CD平分∠ACB,∠ACB=90°,求证:CA+CB=数学公式CD.

证明:连接AD,BD,过A作AM⊥CD,过B作BN⊥CD,垂足分别为M、N,
∵AB为直径,CD平分∠ACB交⊙O于D,
∴∠ACD=∠BCD=∠ACB=45°,
∴△ACM与△BCN都是等腰直角三角形,AD=BD,
在Rt△ACM中,CM=CA,在Rt△BCN中,CN=CB,
∴CM+CN=(CA+CB),
∵AB是直径,
∴∠ADB=90°,
∴∠ADM+∠BDN=90°,
又∵∠BDN+∠DBN=90°,
∴∠ADM=∠DBN,
在△ADM与△BDN中,

∴△ADM≌△BDN(AAS),
∴DN=AM,
又∵AM=CM(等腰直角三角形两直角边相等),
∴CM=DN,
∴CD=CN+DN=CN+CM=(CA+CB),
∴CA+CB=CD.
分析:根据直径所对的圆周角是直角,以及角平分线的定义可得∠ACD=∠BCD=45°,过A作AM⊥CD,过B作BN⊥CD,垂足分别为M、N,得到△ACM与△BCN都是等腰直角三角形,根据等腰直角三角形斜边与直角边的关系可得CM=CA,BN=CB,再利用角角边定理证明△ADM与△BDN全等,根据全等三角形对应边相等得到DN=AM,所以DN=CM,从而得到CM+CN=DN+CN=CD,整理即可得证.
点评:本题考查了圆周角定理,全等三角形的判定与性质,以及等腰直角三角形的判定与性质,作出辅助线构造出等腰直角三角形与全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,E为△ABC的重心,ED=3,则AD=
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•井研县模拟)如图,D为△ABC的AB边上的一点,∠ABC=∠ACD,AD=2cm,AB=3cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D为△ABC的边AB上一点,且∠ABC=∠ACD,AD=3cm,AB=4cm,则AC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,DE为△ABC中AC边的中垂线,BC=8,AB=10,则△EBC的周长是(  )

查看答案和解析>>

同步练习册答案