如图(1),AB⊥BD,CD⊥BD,垂足分别为点B、D,AD与BC相交于点E,EF⊥BD,垂足为点F,则
成立.
若将图中的垂直改为斜交如图(2),AB∥CD,AD、BC相交于点F,过点E作EF∥AB,交BD于F,则(1)
还成立吗?如果不成立,请说明理由;
(2)请找出S△ABD、S△BED与S△BDC的关系,并给出证明.
科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013
反比例函数y=
(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=
,故ab=k,所以S=|k|(如图(1)).
这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:
例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=
(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.
解答:
=|k|
=|k|
故
=![]()
例2:如图(3),在y=
(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有( )
![]()
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵
=
|k|=
,
=
|k|=![]()
=
|k|=![]()
S1=S2=S3,故选A.
例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.
![]()
解答:∵S△AOM=
|k|
又S△AOM=3,
∴
|k|=3,|k|=6
∴k=±6
又∵曲线在第三象限
∴k>0∴k=6
∴所以反比例函数的解析式为y=
.
根据是述意义,请你解答下题:
如图(5),过反比例函数y=
(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得
![]()
A.S1>S2
B.S1=S2
C.S1<S2
D.大小关系不能确定
查看答案和解析>>
科目:初中数学 来源:数学教研室 题型:044
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如下图,E是
ABCD的边AB上的一点,射线CE交BD于F,交DA的延长线于点G,AE:EB=1:2.图中有哪些位似三角形?位似中心分别是哪一个点?位似比分别为多少?填在下表中.
| 位似三角形 | 位似中心 | 位似比 |
| △GAE与△CBE | 点E | 1:2 |
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法。请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高。
(1)若BD=h,M时直线BC上的任意一点,M到AB、AC的距离分别为
。
① 若M在线段BC上,请你结合图形①证明:
= h;
② 当点M在BC的延长线上时,
,h之间的关系为 (请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线
:y =
x + 6 ;
:y = -3x+6 若
上的一点M到
的距离是3,请你利用以上结论求解点M的坐标。
图②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com