如图,正方形ABCD中,BE=CF.
(1)求证:△BCE≌△CDF;
(2)求证:CE⊥DF;
(3)若CD=4,且DG2+GE2=18,则BE= .
![]()
(1)证明见解析;(2)证明见解析;(3)
.
【解析】
试题分析:(1)根据四边形ABCD是正方形,可得DC=BC,∠DCF=∠CGE,结合BE=CF,于是可以证明△BCE≌△CDF;
(2)由△DCF≌△CBE得到∠BCE=∠CDF,结合角角之间的数量关系,证明出CE⊥DF;
(3)连接DE,首先证明△DGE是直角三角形,利用勾股定理结合正方形的性质即可求出AE.
(1)∵四边形ABCD是正方形,
∴DC=BC,∠DCF=∠CGE,
∵在△DCF和△CBE中,
,
∴△DCF≌△CBE(SAS);
(2)∵△DCF≌△CBE,
∴∠BCE=∠CDF,
∵∠CDF+∠DFC=90°,
∴∠BCE+∠DFC=90°,
∴∠CGF=90°;
(3)连接DE,
∵∠CGF=90°,
∴∠EGD=90°,
∴△DGE是直角三角形,
∵DE2=DG2+GE2=18,
∵CD=4,
∴AD=CD=4,
∴AE=
.
考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理.
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级下学期期中考试数学试卷(解析版) 题型:选择题
如图,在扇形纸片AOB中,OA =10,?AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为 ( )
A.
B.
C.
D.![]()
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级一模数学试卷(解析版) 题型:解答题
“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“十一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数是多少?
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率多少?
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级一模数学试卷(解析版) 题型:选择题
已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.极差是5 B.中位数是9 C.众数是5 D.平均数是9
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省昆山市九年级下学期教学质量调研(二模)数学试卷(解析版) 题型:解答题
如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省无锡市九年级二模数学试卷(解析版) 题型:解答题
甲、 乙两个袋中均装有三张除标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.
(1)用列表或画树形图的方法写出点A(x,y)的所有情况;
(2)求点A落在直线y=2x上的概率.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省无锡市锡山区九年级下学期期中考试(一模)数学试卷(解析版) 题型:选择题
如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( )
![]()
A.6 B.2
C.2
D.2
+2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com