分析 标注字母,根据图形判断出∠1、∠3是全等直角三角形的两个互余的锐角,∠2为等腰直角三角形的锐角,然后求解即可.
解答
解:如图,在△ABC和△DEA中,$\left\{\begin{array}{l}{AB=DE}\\{∠B=∠AED=90°}\\{BC=AE}\end{array}\right.$,
∴△ABC≌△DEA(SAS),
∴∠3=∠BAC,
在Rt△ABC中,∠BAC+∠1=90°,
∴∠1+∠3=90°,
由图可知,△ABF是等腰直角三角形,
∴∠2=45°,
∴∠1+∠2+∠3=90°+45°=135°.
故答案为:135.
点评 本题考查了全等图形,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 316×106 | B. | 31.6×107 | C. | 3.16×108 | D. | 0.316×109 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com