精英家教网 > 初中数学 > 题目详情
如图,直线y=-
12
x+1与x轴、y轴分别交于点A、B,以AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,若点P(1,a)为坐标系中的一个动点.
(1)求Rt△ABC的面积;
(2)说明不论a取任何实数,△BOP的面积都是一个常数;
(3)要使得△ABC和△ABP的面积相等,求实数a的值.
分析:(1)先求出A、B两点的坐标,利用勾股定理得到AB的长,等腰Rt△ABC的面积为AB平方的一半;
(2)三角形BOP的底边BO=1,BO边上的高为P点的横坐标1,所以它的面积是一个常数
1
2

(3)讨论,①点P在第四象限,②点P在第一象限,利用面积和差表示出△ABP的面积,然后根据△ABC和△ABP的面积相等建立方程,从而求出a的值.
解答:解:(1)令y=-
1
2
x+1中x=0,得点B坐标为(0,1);
令y=0,得点A坐标为(2,0),
由勾股定理可得AB=
5

故可得S△ABC=
1
2
AB•AC=
5
2


(2)不论a取任何实数,三角形BOP都可以以BO=1为底,点P到y轴的距离1为高,
所以S△BOP=
1
2
为常数;

(3)分两种情况:
①当点P在第四象限时,
∵S△ABO=1,S△APO=-a,S△BOP=
1
2

∴S△ABP=S△ABO+S△APO-S△BOP=S△ABC=
5
2

即1-a-
1
2
=
5
2

解得a=-2,
②当点P在第一象限时,
∵S△ABO=1,S△APO=a,S△BOP=
1
2

∴S△ABP=S△BOP+S△APO-S△ABO=S△ABC=
5
2

1
2
+a-1=
5
2

解得a=3.
综上可得a=-2或3.
点评:此题考查了一次函数综合题,掌握一次函数的性质,会求一次函数与两坐标轴的交点坐标,会用坐标表示线段,掌握用面积的和差表示不规则图形的面积是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线EF过平行四边形ABCD对角线的交点O,分别交AB、CD于E、F,若平行四边形的面积是12,则△AOE与△DOF的面积和为(  )
A、4B、3C、2D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O精英家教网点出发,沿路线O→B→A以每秒1个单位长度的速度运动,到达A点时运动停止.
(1)直接写出A、B两点的坐标;
(2)求出直线AB的解析式;
(3)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);
(4)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-
1
2
 x
与双曲线y=
k
x
相交于A、B两点,点A坐标为(-2,1),则点B坐标为
(2,-1)
(2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-
1
2
 x
与双曲线y=
k
x
相交于A(-2,1)、B两点,则点B坐标为(  )

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大七年级版 2009-2010学年 第16期 总第172期 华师大版 题型:022

如图,直线l1∥12,AB⊥CD,∠1=34°,则∠2=________.

查看答案和解析>>

同步练习册答案