精英家教网 > 初中数学 > 题目详情
13.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为(  )
A.($\frac{\sqrt{2}}{2}$)2013B.($\frac{\sqrt{2}}{2}$)2014C.($\frac{1}{2}$)2013D.($\frac{1}{2}$)2014

分析 根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律“Sn=$(\frac{1}{2})^{n-3}$”,依此规律即可得出结论.

解答 解:在图中标上字母E,如图所示.
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴S2+S2=S1
观察,发现规律:S1=22=4,S2=$\frac{1}{2}$S1=2,S3=$\frac{1}{2}$S2=1,S4=$\frac{1}{2}$S3=$\frac{1}{2}$,…,
∴Sn=$(\frac{1}{2})^{n-3}$.
当n=2016时,S2016=$(\frac{1}{2})^{2016-3}$=$(\frac{1}{2})^{2013}$.
故选C.

点评 本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=$(\frac{1}{2})^{n-3}$”.本题属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连结CH、CG.
(1)求证:CG平分∠DCB;
(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;
(3)连接BD、DA、AE、EB,在旋转过程中,四边形AEBD能否成为矩形?
若能,试求出直线DE的解析式;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列说法中,正确的个数是(  )
(1)连结两点的线段叫做两点间的距离
(2)同一平面内,不相交的两条线段平行
(3)两点之间,线段最短
(4)AB=BC,则点B是线段AC的中点.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC的面积等于四边形AFBD的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是①②③(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,点E是⊙O的直径,AB上一个动点(与A,B不重合),在AB下方有一条弦CD始终与AB保持平行,且AE=CD.连接AC,ED,延长ED交⊙O切线BF于点F,延长CD交BF于点M.请探究当点E在运动时:
(1)四边形ACDE能够成为菱形吗?写出你的猜想并给予证明.
(2)MB与MF数量关系是否发生变化?写出猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在等腰三角形ABC中,AB=AC,点D是BC边上一点,BD<CD,点E是BD的中点,矩形EFGH的边EF在BC上,CF=AH,GH经过点A,AB、AC分别交HE、GF于点M、N.
(1)求证:△AHM≌△CFN;
(2)判断四边形AMDN的形状,并说明理由;
(3)若EF=8,HE=4,AD⊥MD,求线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在菱形ABCD中,E、F分别为边AD、CD上的点,且AE=CF,BE和BF交AC于点M、N.
(1)求证:AM=CN;
(2)联结BD,如果BD是AC与MN的比例中项,求证:BE⊥AD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在正方形ABCD中,边长为2的等边△AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S△EFC=1
其中正确的序号是①②④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,直线y=kx+b与x轴相交于点C,与反比例函数在第一象限内的图象相交于点A(1,8)、B(m,2).
(1)求该反比例函数和直线y=kx+b的表达式;
(2)求证:△OBC为直角三角形;
(3)设∠ACO=α,点Q为反比例函数在第一象限内的图象上一动点且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围.

查看答案和解析>>

同步练习册答案