精英家教网 > 初中数学 > 题目详情
2.如图,在正方形ABCD中,边长为2的等边△AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S△EFC=1
其中正确的序号是①②④.

分析 根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据等边三角形的边长求得直角三角形的边长,从而求得面积可以判断④的正误.

解答 解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{AE=AF}\end{array}\right.$,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=$\sqrt{2}$,
∴S△EFC=$\frac{1}{2}$FC•EC=$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{2}$=1
④说法正确,
∴正确的有①②④.
故答案为:①②④.

点评 本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.
(1)当x=2时,在(a)中画出草图,并求出对应y的值;
(2)当x=5时,在(b)中画出草图,并求出对应y的值;
(3)利用图(c)写出y与x之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为(  )
A.($\frac{\sqrt{2}}{2}$)2013B.($\frac{\sqrt{2}}{2}$)2014C.($\frac{1}{2}$)2013D.($\frac{1}{2}$)2014

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.平行四边形的一边长是6,则它的对角线长可能是(  )
A.4和8B.2和12C.4和6D.2和14

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.
(1)写出O到△BC三个顶点的距离的关系(不要求证明);
(2)如果点M,N分别在线段AB,AC上移动,在移动中保持AN=BM,请你判断△OMN的形状,并证明你的结论;
(3)若AN=3,NC=4,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在直角平面坐标系中,△ABC的顶点坐标分别是A(1,1)、B(3,-1)、C(2,2).
(1)作出△ABC关于y轴对称的△A1B1C1
(2)将△ABC沿A点顺时针旋转90°,求点B经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若菱形面积为2,它的对角线长分别为x,y,则点M(x,y)所在的函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.关于x的一元二次方程(m-1)x2+3x+m2-1=0的一根为0,则m的值是(  )
A.-1B.-2C.±1D.±2

查看答案和解析>>

同步练习册答案