精英家教网 > 初中数学 > 题目详情

【题目】把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是( )
A.a=2,b=3
B.a=﹣2,b=﹣3
C.a=﹣2,b=3
D.a=2,b=﹣3

【答案】B
【解析】解:∵x2+ax+b=(x+1)(x﹣3),
∴a=1﹣3=﹣2,b=﹣3×1=﹣3,
故选:B.
根据x2+ax+b分解因式的结果为(x+1)(x﹣3),可得a=﹣3+1,常数项的积是b.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.

(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为 .

(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?

(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角三角形ABC的顶点ACx轴上,∠ACB=90°AC=BC=,反比例函数)的图象分别与ABBC交于点DE.连接DE,当△BDE∽△BCA时,点E的坐标为______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,E是边BC的中点.AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证AME≌△ECF,所以AE=EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把E是边BC的中点改为E是边BC(B,C)的任意一点,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,EBC的延长线上(C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立。你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:

(1)九年级(1)班共有 名学生;

(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是

(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C、D、E在线段AB上,且满足AC=CD=DB,点E是线段DB的中点,若线段CE=6cm,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.

(1)问运动多少时BC=8(单位长度)?
(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存在,求线段PD的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若4anb3与﹣3a5bm1是同类项,则m﹣n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(﹣a234a 22xx+1+x+12

查看答案和解析>>

同步练习册答案