【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
【答案】(1)直线DE与⊙O相切;(2)4.75.
【解析】试题分析:(1) 直线DE与⊙O相切,连接OD,根据等腰三角形的性质可得∠A=∠ODA,根据线段垂直平分线的性质及等腰三角形的性质易得∠B=∠EDB,易证ODA+∠EDB=,即可得∠ODE=-=,所以直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8-x.因∠C=∠ODE =,根据勾股定理可得,即,解得x的值即可得线段DE的长.
试题解析: (1) 直线DE与⊙O相切.
理由如下:
连接OD,
∵OD=OA,
∴∠A=∠ODA.
∵EF是BD的垂直平分线,
∴EB="ED."
∴∠B=∠EDB.
∵∠C=,
∴∠A+∠B=.
∴∠ODA+∠EDB=.
∴∠ODE=-=.
∴直线DE与⊙O相切.
(2) 解法一:
连接OE,
设DE=x,则EB=ED=x,CE=8-x.
∵∠C=∠ODE =,
∴.
∴.
∴.
即DE=.
解法二:
连接DM,
∵AM是直径,
∴∠MDA=,AM=4.
又∵∠C=,
∴,
.
∴, ∴AD=2.4.
∴BD=10-2.4=7.6.
∴BF=.
∵EF⊥BD,∠C=,
∴.
∴, BE=.
∴DE=.
科目:初中数学 来源: 题型:
【题目】抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为( )
A.y=3(x﹣3)2﹣3
B.y=3x2
C.y=3(x+3)2﹣3
D.y=3x2﹣6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.
(1)求证:不论a为何值,该二次函数的图象与x轴一定有公共点;
(2)当a=4时,该二次函数的图象顶点为A,与x轴交于B,D两点,与y轴交于C点,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为,另两边的长b、c恰好是这个方程的两个根,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.
(1)请用树状图列举出三次传球的所有可能情况;
(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.
①连结OE,求△OBE的面积.
②求弧AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A.三角形的三条中线必交于三角形内一点B.三角形的三条高均在三角形内部C.三角形的外角可能等于与它不相邻的内角 D.四边形具有稳定性
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com