【题目】如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
【答案】(1)抛物线的解析式为y=﹣x2;
(2)要使货车安全通过此桥,货车的速度应超过60千米/时.
【解析】试题分析:根据抛物线在坐标系的位置,设抛物线的解析式为y=ax2,设D、B的坐标求解析式;
试题解析:(1)设抛物线的解析式为y=ax2(a不等于0),桥拱最高点O到水面CD的距离为h米.
则D(5,﹣h),B(10,﹣h﹣3)
∴
解得
∴抛物线的解析式为y=﹣x2
(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时)
货车按原来速度行驶的路程为:40×1+40×4=200<280
∴货车按原来速度行驶不能安全通过此桥.
设货车速度提高到x千米/时
当4x+40×1=280时,x=60
∴要使货车安全通过此桥,货车的速度应超过60千米/时.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 长方形有且只有一条对称轴
B. 垂直于线段的直线就是线段的对称轴
C. 角的对称轴是角的平分线
D. 角平分线所在的直线是角的对称轴
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列命题中:
①同旁内角互补;
②两点确定一条直线;
③不重合的两条直线相交,有且只有一个交点;
④若一个角的两边分别与另一个角的两边平行,那么这两个角相等
其中属于真命题的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:
(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数的图象与x轴两交点间的距离为2,且抛物线的开口向上时,求此抛物线的解析式;
(3)在坐标系中画出(2)中的函数图象,分析当直线y=x+b与(2)中的图象只有两个交点时b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是( )
A.这个多项式是五次四项式
B.常数项是1
C.四次项的系数是7
D.﹣7xy3﹣2x3y2+0.3x2y+1是整式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m,9m,9.4m,8.2m,9.2m,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么( ).
(A)甲、乙成绩一样稳定 (B)甲成绩更稳定
(C)乙成绩更稳定 (D)不能确定谁的成绩更稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程mx-3x+m-4=0(m为常数).
(1)求证:方程有两个不相等的实数根;
(2)设,是方程的两个实数根,且+=6.请求出方程的这两个实数根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com