精英家教网 > 初中数学 > 题目详情
15.如图,某窗户由矩形和弓形组成,已知弓形的跨度AB=6m,弓形的高EF=2m,现设计安装玻璃,请帮工程师求出$\widehat{AB}$所在圆O的半径.

分析 根据垂径定理可得AF=$\frac{1}{2}$AB,再表示出AO、OF,然后利用勾股定理列式进行计算即可得解.

解答 解:∵弓形的跨度AB=6m,EF为弓形的高,
∴OE⊥AB于F,
∴AF=$\frac{1}{2}$AB=3m,
∵$\widehat{AB}$所在圆O的半径为r,弓形的高EF=2m,
∴AO=r,OF=r-2,
在Rt△AOF中,由勾股定理可知:AO2=AF2+OF2
即r2=32+(r-2)2
解得r=$\frac{13}{4}$(m).
答:$\widehat{AB}$所在圆O的半径为$\frac{13}{4}$m.

点评 本题考查了垂径定理的应用,勾股定理的应用,此类题目通常采用把半弦,弦心距,半径三者放到同一个直角三角形中,利用勾股定理得出方程是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.小华的爸爸存入银行1万元,先存一个一年定期,一年后将本息自动转存另一个一年定期,两年后共得本息10609元.设存款的年利率为x,则由题意列方程应为10000(1+x)2=10609.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.等边三角形的一条中线长为$\sqrt{3}$,则这个三角形边长等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,直线y1=x与抛物线y2=x2-x-3交于A、B两点,则y1<y2的取值范围是x<-1或x>3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知某数的平方根是a+3和2a-15,求1-7a的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=$\frac{3}{2}$.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是$\frac{9}{2}$或$\frac{27}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若x2+mx+n分解因式的结果是(x+2)(x-1),则m+n=(  )
A.1B.-2C.-1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,梯形OABC中,AB∥OC,BC所在的直线为y=x+12,点A坐标为
A (0,b),其中b>0,点Q从点C出发经点B到达点A,它在BC上的速度为每秒$\sqrt{2}$个单位,它在AB上的速度为每秒1个单位,点P从点C出发,在线段CO上来回运动,速度为每秒2个单位,当Q到达A点时,P也停止运动. P、Q两点同时从C点出发,运动时间为t秒,过P作直线l垂直于x轴,如图,若以BQ为半径作⊙Q.
(1)当⊙Q第一次和x轴相切时,直接写出t和b的关系式;(用t表示b)
(2)当Q在AB上运动时,若⊙Q和x轴始终没有交点,求b的取值范围;
(3)当b=4时,求直线l与⊙Q从第一次相切到第二次相切经过的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知两条线段a、b(a>b)
(1)画线段a+b;
(2)画线段2a-b.

查看答案和解析>>

同步练习册答案