精英家教网 > 初中数学 > 题目详情
20.如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=$\frac{3}{2}$.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是$\frac{9}{2}$或$\frac{27}{2}$.

分析 设A(2m,3m)、B(2n,3n),当OC=2AD时,能找出点D为线段BC中点,从而得出m、n间的关系,将A、B点坐标代入抛物线与抛物线对称轴x=2m联立方程组,解方程组即可求得c的值.

解答 解:由tan∠AOE=$\frac{3}{2}$,可设A、B点坐标分别为(2m,3m)、(2n,3n),
∵AD∥OC,
∴∠ADB=∠OCB,∠DAB=∠COA,
∴△BAD∽△BOC.
∵OC=2AD,
∴D点为线段BC的中点,
∵C(0,c),B(2n,3n),
∴D点横坐标为$\frac{0+2n}{2}$=n,
由题意知A、D点均在抛物线的对称轴上,
∴n=2m,
∴B点坐标为(4m,6m),
∵A,B在抛物线上,且抛物线对称轴为x=2m,
∴有$\left\{\begin{array}{l}{3m=4{m}^{2}+2bm+c}\\{6m=16{m}^{2}+4bm+c}\\{-\frac{b}{2}=2m}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=0}\\{b=0}\\{c=0}\end{array}\right.$,或$\left\{\begin{array}{l}{m=\frac{3}{4}}\\{b=-3}\\{c=\frac{9}{2}}\end{array}\right.$,
∵c>0,
∴c=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查了三角形的相似以及二次函数的性质,解题的关键是根据OC=2AD找到A、B点坐标的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.用四舍五入法对3.141592取近似数并精确到0.01,得到的近似值是3.14.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如果点P(1+2x,3y-2)在y轴上,则x,y应满足的条件是(  )
A.x=$-\frac{1}{2}$,y为任意实数B.x为任意实数,y=$\frac{2}{3}$
C.x=$-\frac{1}{2}$,y=$\frac{2}{3}$D.x为任意实数,y=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知双曲线y=$\frac{m}{x}$(m>0)与直线y=kx交于A、B两点,点A的坐标为(3,2). 
(1)由题意可得m的值为6,k的值为$\frac{2}{3}$,点B的坐标为(-3,-2);
(2)若点P(n-2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标;
(3)在(2)小题的条件下:如果M为x轴上一点,N为y轴上一点,以点P、A、M、N为顶点的四边形是平行四边形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,某窗户由矩形和弓形组成,已知弓形的跨度AB=6m,弓形的高EF=2m,现设计安装玻璃,请帮工程师求出$\widehat{AB}$所在圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若函数y=kx|k|-2的图象是双曲线,且图象在第二、四象限内,那么k=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知关于x的一元二次方程x2-3$\sqrt{2}$x+$\frac{3}{2}$k=0有实数根,则k的取值范围是k≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,
(1)如图甲:在OA上选取一点D,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD 所在直线的解析式;
(2)如图乙:在OC上选取一点F,将△AOF沿AF翻折,使点O落在BC边,记为G.
①求折痕AF所在直线的解析式;
②再作GH∥AB交AF于点H,若抛物线$y=-\frac{1}{12}{x^2}+h$过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数.
(3)如图丙:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K.请你猜想:①折痕IJ所在直线与第(2)题②中的抛物线会有几个公共点;②经过K作KL∥AB与IJ相交于L,则点L是否必定在抛物线上.将以上两项猜想在(l)的情形下分别进行验证.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆半径的$\sqrt{2}$倍,为了使航船(S)不进入暗礁区,那么S 对两灯塔A,B的视角∠ASB必须(  )
A.大于60°B.小于60°C.大于45°D.小于45°

查看答案和解析>>

同步练习册答案