精英家教网 > 初中数学 > 题目详情

顺次连接四边形ABCD各边中点所围成的是正方形,则四边形ABCD的对角线


  1. A.
    互相垂直
  2. B.
    互相平分
  3. C.
    相等
  4. D.
    相等且互相垂直
D
分析:由于四边形EFGI是正方形,那么∠IGF=90°,IE=EF=FG=IG,而G、F是AD、CD中点,易知GF是△ACD的中位线,于是GF∥AC,GF=AC,同理可得IG∥BD,IG=BD,易求AC=BD,又由于GF∥AC,∠IGF=90°,利用平行线性质可得∠IHO=90°,而IG∥BD,易证∠BOC=90°,即AC⊥BD,从而可证四边形ABCD的对角线互相垂直且相等.
解答:解:如右图所示,四边形ABCD的各边中点分别是I、E、F、G,且四边形EFGI是正方形,
∵四边形EFGI是正方形,
∴∠IGF=90°,IE=EF=FG=IG,
又∵G、F是AD、CD中点,
∴GF是△ACD的中位线,
∴GF∥AC,GF=AC,
同理有IG∥BD,IG=BD,
AC=BD,
即AC=BD,
∵GF∥AC,∠IGF=90°,
∴∠IHO=90°,
又∵IG∥BD,
∴∠BOC=90°,
即AC⊥BD,
故四边形ABCD的对角线互相垂直且相等.
故选D.
点评:本题考查了正方形的性质、三角形中位线定理、平行线性质.解题的关键是连接AC、BD,构造平行线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=
12
BC.根据上面的结论:
(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;
(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,若顺次连接四边形ABCD各边中点所得四边形EFGH是菱形,则称原四边形ABCD为“中母菱形”.定义:若四边形的对角线相等,那么这个四边形是中母菱形.
(1)请写一个你学过的特殊四边形中是中母菱形的图形的名称.
(2)如图有等边三角形ABC中,D、E分别是AB、AC的中点,连接DE,猜想图中哪个四边形是中母菱形,并加以证明.
(3)在等边三角形ABC中,若D、E不是AB、AC的中点,且BD=AE,探究满足上述条件的图形中是否在中母菱形,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为1的正方形网格中,△A′B′C′与△ABC是中心对称图形.
(1)在图中标出△A′B′C′与△ABC的对称中心点O;
(2)如果将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1
(3)画出△A1B1C1绕点O旋转180°后得到的△A2B2C2
(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?
(5)求出四边形CC1C′C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,若顺次连接四边形ABCD各边中点所得四边形EFGH是菱形,则称原四边形ABCD为“中母菱形”.定义:若四边形的对角线相等,那么这个四边形是中母菱形.
(1)请写一个你学过的特殊四边形中是中母菱形的图形的名称.
(2)如图有等边三角形ABC中,D、E分别是AB、AC的中点,连接DE,猜想图中哪个四边形是中母菱形,并加以证明.
(3)在等边三角形ABC中,若D、E不是AB、AC的中点,且BD=AE,探究满足上述条件的图形中是否在中母菱形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2008年内蒙古鄂尔多斯市东胜实验中学中考数学模拟试卷(解析版) 题型:解答题

如图1,若顺次连接四边形ABCD各边中点所得四边形EFGH是菱形,则称原四边形ABCD为“中母菱形”.定义:若四边形的对角线相等,那么这个四边形是中母菱形.
(1)请写一个你学过的特殊四边形中是中母菱形的图形的名称.
(2)如图有等边三角形ABC中,D、E分别是AB、AC的中点,连接DE,猜想图中哪个四边形是中母菱形,并加以证明.
(3)在等边三角形ABC中,若D、E不是AB、AC的中点,且BD=AE,探究满足上述条件的图形中是否在中母菱形,并证明你的结论.

查看答案和解析>>

同步练习册答案