分析:(1)根据角平分线的定义得到∠DBC=
∠ABC,∠DCB=
∠ACB,再根据三角形内角和定理得到∠BDC=180°-∠DBC-∠DCB=180°-
(∠ABC+∠ACB),
而∠ABC+∠ACB=180°-∠A,所以∠BDC=90°+
∠A,然后把∠A=50°代入计算即可;
(2)由(1)得到∠BDC=90°+
∠A,然后把∠A=α代入即可.
解答:解:(1)∵BD平分∠ABC,CD平分∠ACB,
∴∠DBC=
∠ABC,∠DCB=
∠ACB,
∴∠BDC=180°-∠DBC-∠DCB=180°-
(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴∠BDC=180°-
(180°-∠A)
=90°+
∠A,
=90°+
×50°
=115°;
(2)∵∠BDC=90°+
∠A,
∴∠BDC=90°+
α.
点评:本题考查了三角形内角和定理:三角形内角和是180°.