精英家教网 > 初中数学 > 题目详情

已知:二次函数y=-(x-h)2+k图象的顶点P在x轴上,且它的图象经过点A(3,-1),与y轴相交于点B,一次函数y=ax+b的图象经过点P和点A,并与y轴的正半轴相交.
求:(1)k的值;
(2)这个一次函数的解析式;
(3)∠PBA的正弦值.

解:(1)∵二次函数y=-(x-h)2+k图象的顶点P在x轴上,
∴k=0.

(2)∵二次函数y=-(x-h)2的图象经过点A(3,-1),
∴-1=-(3-h)2
∴h1=2,h2=4.
∴点P的坐标为(2,0)或(4,0).
(i)当点P的坐标为(2,0)时,
∵一次函数y=ax+b的图象经过点P和点A,
解得
(ii)当点P的坐标为(4,0)时,
∵一次函数y=ax+b的图象经过点P和点A,
解得
∵一次函数的图象与y轴的正半轴相交,
不符合题意,舍去.
∴所求的一次函数解析式为y=-x+2.

(3)∵点P的坐标为(2,0),点A的坐标为(3,-1),点B的坐标为(0,-4),
∴BP=2,AB=3,AP=
,BP2=20.
∴AB2+AP2=BP2
∴∠BAP=90°.

分析:(1)根据二次函数y=-(x-h)2+k图象的顶点P在x轴上即可求出k的值;
(2)首先根据二次函数y=-(x-h)2的图象经过点A(3,-1),求出P点的坐标,然后利用待定系数法求出一次函数的解析式;
(3)点P的坐标为(2,0),点A的坐标为(3,-1),点B的坐标为(0,-4),求出BP、AP、AB的长度,利用勾股定理逆定理证明∠BAP=90°,进而求出∠PBA的正弦值.
点评:本题主要考查二次函数的综合题的知识点,解答本题的关键掌握二次函数的性质,待定系数求解析式和勾股定理逆定理的应用,此题难度不是很大,是一道不错的习题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案