精英家教网 > 初中数学 > 题目详情

如图所示,已知AB为⊙O的直径,点P为OA上一点,弦MN过点P,且AP=2,OP=3,MP=2数学公式,若OQ⊥MN于点Q,求OQ的长.

解:连接ON.则ON=OA=OB=AP+OP=5,
∴BP=OB+OP=5+3=8,
∵AP•BP=MP•PN,
∴PN===4
∴MN=MP+PN=2+4=6
∵OQ⊥MN,
∴QN=MN=3
在直角△ONQ中,OQ===
分析:连接ON,首先利用相交弦定理求得PN的长,即可求得MN的长,根据垂径定理求得QM的长,然后在直角△ONP中利用勾股定理求得OQ的长.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD,垂足为E.连接AC,OC,BC,若EB=8cm,CD=24cm,则⊙O的直径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为⊙O的直径,点P为OA上一点,弦MN过点P,且AP=2,OP=3,MP=2
2
,若OQ⊥MN于点Q,求OQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且弧CD=弧BD,过D作DE⊥AC于点E,求证:DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

同步练习册答案