【题目】如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG于点H.
(1)求证:△EDC≌△HFE;
(2)连接BE、CH.
①四边形BEHC是怎样的特殊四边形?证明你的结论.
②当AB与BC的比值为 时,四边形BEHC为菱形.
【答案】(1)证明见解析;(2)①四边形BEHC为平行四边形②.
【解析】试题分析:(1)依据题意可得到FE=AB=DC,∠F=∠EDC=90°,FH∥EC,利用平行线的性质可证明∠FHE=∠CED,然后依据AAS证明△EDC≌△HFE即可;
(2)①由全等三角形的性质可知EH=EC,由旋转的性质可得到BC=EC,从而可证明EH=BC,最后依据平行四边形的判定定理进行证明即可;②连接BE.可证明△EBC为等边三角形,则∠ABE=30°,利用特殊锐角三角函数值可得到AB:BE=:2.
试题解析:(1)∵矩形FECG由矩形ABCD旋转得到,
∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,
∴∠FHE=∠CED.
在△EDC和△HFE中,
,
∴△EDC≌△HFE.
(2)①四边形BEHC为平行四边形,
∵△EDC≌△HFE,
∴EH=EC.
∵矩形FECG由矩形ABCD旋转得到,
∴EH=EC=BC,EH∥BC,
∴四边形BEHC为平行四边形.
②连接BE.
∵四边形BEHC为菱形,
∴BE=BC.
由旋转的性质可知BC=EC.
∴BE=EC=BC.
∴△EBC为等边三角形.
∴∠EBC=60°.
∴∠ABE=30°.
∴AB:BE=:2.
又∵BE=CB,
∴AB与BC的比值=.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.F是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上.已知A,Q两点间的距离是O,F两点间距离的a倍.若用(a,t)表示经过时间t(s)时,△OCF,△FAQ,△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是( )
A.BC是△ABE的高
B.BE是△ABD的中线
C.BD是△EBC的角平分线
D.∠ABE=∠EBD=∠DBC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com