精英家教网 > 初中数学 > 题目详情
(2010•资阳)如图,已知直线y=2x+2交y轴于点A,交x轴于点B,直线l:y=-3x+9
(1)求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2)若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
(3)在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F.在抛物线上是否存在点H,使直线l、FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的
12
?若存在,求点H的横坐标;若不存在,请说明理由.
分析:(1)已知直线AB和直线l的解析式,易求得A、B、C三点的坐标,利用待定系数法即可求出抛物线的解析式;进而得出抛物线的对称轴方程,抛物线的开口向下,在对称轴左侧函数的函数值随x的增大而增大.
(2)四边形ABCE是梯形,且以BC为底,所以AE必与x轴平行,即A、E关于抛物线对称轴对称,由此能求得点E的坐标和AE的长,再根据梯形的面积公式求解即可.
(3)在(2)题中已求得了梯形ABCE的面积,则直线l、FH和x轴所围成的三角形的面积可得;将E点的横坐标代入直线l的解析式中即可求出F点的坐标,设FH与x轴的交点为M,以CM为底,点F的纵坐标的绝对值为高即可表达出△FMC的面积,再根据上面求得的面积具体值,即可求出CM的长由此得出点M的坐标;首先求出直线FM的解析式,联立抛物线的解析式即可得出H点的横坐标.
解答:解:(1)∵直线AB的解析式为y=2x+2,
∴点A、B的坐标分别为A(0,2)、B(-1,0);
又直线l的解析式为y=-3x+9,∴点C的坐标为(3,0).
由上,可设经过A、B、C三点的抛物线的解析式为y=a(x+1)(x-3),将点A的坐标代入,得:a=-
2
3

∴抛物线的解析式为y=-
2
3
x2+
4
3
x+2,
∴抛物线的对称轴为x=1;
由于抛物线的开口向下,所以函数值随x的增大而增大时,x的取值范围是x≤1.

(2)过A作AE∥BC,交抛物线于点E;显然,点A、E关于直线x=1对称,
∴点E的坐标为E(2,2);
故梯形ABCE的面积为 S=
1
2
(2+4)×2=6.

(3)假设存在符合条件的点H,作直线FH交x轴于M;
由题意知,S△CFM=3,设F(m,n),易知m=2;
将F(2,n)的坐标代入y=-3x+9中,可求出n=3,则FG=3;
∴S△CFM=
1
2
FG•CM=3,∴CM=2.
由C(3,0)知,M1(1,0)、M2(5,0),
设FM的解析式为y=kx+b:
由M1(1,0)、F(2,3)得,FM1解析式为y=3x-3,则FM1与抛物线的交点H满足:
y=3x-3
y=-
2
3
x2+
4
3
x+2

整理得,2x2+5x-15=0,
∴x=
-5±
145
4

由M2(5,0)、F(2,3)得,FM2解析式为y=-x+5,则FM2与抛物线的交点H满足:
y=-x+5
y=-
2
3
x2+
4
3
x+2
,整理得,2x2-7x+9=0,
∵△<0,∴不符合题意,舍去;
即:H点的横坐标为
-5±
145
4
点评:此题主要考查了函数解析式的确定、函数增减性的判定、图形面积的解法等重要知识;最后一题中,要注意分情况讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知直线l:y=kx+b与双曲线C:y=
m
x
相交于点A(1,3)、B(-
3
2
,2),点A关于原点的对称点为P.
(1)求直线l和双曲线C对应的函数关系式;
(2)求证:点P在双曲线C上;
(3)找一条直线l1,使△ABP沿l1翻折后,点P能落在双曲线C上.
(指出符合要求的l1的一个解析式即可,不需说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,A为⊙O上一点,从A处射出的光线经圆周4次反射后到达F处.如果反射前后光线与半径的夹角均为50°,那么∠AOE的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°.设动点P、Q、R在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行.
(1)当点P在AB边上时,在图中画出一个符合条件的△PQR (不必说明画法);
(2)当点P在BC边或CD边上时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点.若点B对应的数是x,点C对应的数是x2-3x,求x的值.

查看答案和解析>>

同步练习册答案