精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,已知AD>AB.

(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)

(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.

【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.

【解析】

试题分析:(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出BAE=AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.

试题解析:解:(1)如图所示:

(2)四边形ABEF是菱形;理由如下:

四边形ABCD是平行四边形,

ADBC,

∴∠DAE=AEB,

AE平分BAD,

∴∠BAE=DAE,

∴∠BAE=AEB,

BE=AB,

由(1)得:AF=AB,

BE=AF,

BEAF,

四边形ABEF是平行四边形,

AF=AB,

四边形ABEF是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】分解因式:x3﹣x=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知8 6.

(1)ab同号,求ab的值;

(2)ba,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.

(1)判断四边形CEGF的形状,并证明你的结论;

(2)若AB=3,BC=9,求线段CE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】被誉为“里下河的明珠”的九龙口自然保护区,地处射阳湖腹部的建湖县九龙口镇,由蚬河等9条自然河道汇集而成,水面约6670万平方米,这里藏垒水禽野味,广植柴蒲菱藕,盛产鱼虾螃蟹,有“金滩银荡”之美誉,是天然的“聚宝盆”,其中6670万平方米用科学记数法表示为平方米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一个我们喜欢玩的魔方,它是由若干个小正方体组成的一个大正方体,在这个大正方体的六个面上,分别涂有6种不同的颜色.根据你的观察与想象回答下列问题:①有几个小正方体只有一个面被涂有颜色?②有几个小正方体有两个面被涂有颜色?③有几个小正方体有三个面被涂有颜色?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店有2个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这笔买卖中,这家商店(
A.赚了10元
B.赔了10元
C.不赔不赚
D.赚了8元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,

①BC与CF的位置关系为:

②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.

查看答案和解析>>

同步练习册答案